Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), АО=ОС=OS=sqrt(2)/2.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO.
Из треугольника SOM получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3
Пусть точки касания вписанных окружностей делят стороны треугольника CBE на отрезки (считая от С) z1 z2 z3, так что EC = z1 + z3; CB = z1 + z2; BE = z2 + z3; аналогично для треугольника EBA AE = z5 + z6; AB = z5 + z4; BE = z6 + z4; Надо найти z4 - z2; (это - расстояния от точки B до точек касания окружностей с BE) По условию z4 + z5 = z1 + z2 + 4; z1 + z3 = z6 + z5; (точка E - середина AC, AE = CE) z2 + z3 = z4 + z6; (=BE) Вычитая из третьего уравнения второе, легко найти z4 - z5 = z2 - z1; Если это сложить с первым, то 2*z4 = 2*z2 + 4; откуда z4 - z2 = 2;
Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), АО=ОС=OS=sqrt(2)/2.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO.
Из треугольника SOM получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3
Надо найти z4 - z2; (это - расстояния от точки B до точек касания окружностей с BE)
По условию
z4 + z5 = z1 + z2 + 4;
z1 + z3 = z6 + z5; (точка E - середина AC, AE = CE)
z2 + z3 = z4 + z6; (=BE)
Вычитая из третьего уравнения второе, легко найти
z4 - z5 = z2 - z1;
Если это сложить с первым, то
2*z4 = 2*z2 + 4;
откуда z4 - z2 = 2;