Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).
возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
аb^2=ah^2+bh^2
bh^2=ab^2-ah^2
bh^2=144-108
bh^2=36
bh=6 см
ответ: 6 см.