На рисунке угол АСВ прямой, AE=AC и ВД=ВС.Найти угол ДСЕ.В треугольнике ABC угол A равен 38 градусов угол C равен 22 градуса. Из точки В проведенны две прямые ВД и ВЕ(точки Д и Е лежат на стороне АС), из которых первая образует с АВ угол ,равный углу С, а другая образует с ВС угол, равный углу А. Найдите длину отрезку ДЕ, если ВЕ = 5,2 см Можно подробно
Опустим из вершин меньшего основания перпендикуляры к большему. Трапеция равнобедренная, значит, большее основание равно меньшему основанию плюс два равных отрезка при углах 60°.
Отрезки находим из прямоугоных треугольников, в которых один из углов по условию задачи 60°, второй по построению 90°, третий, соответственно, 30°.
Известно, что катет, противолежащий углу 30°, равен половине гипотенузы.
Величина отрезков АН и КД равна 16:2=8 см
АД=8*2+х
АД+ВС=16+х+х=38см
2х=22см
х=11 см-это меньшее основание
х+16=27 см- это большее основание.
ответ: АД=27 см,ВС=11 см
Прямоугольный треугольник, следовательно, один из углов будет равен 90 градусам. Острые углы равны = 180 - 90 ( прямоугольный угол )
Теперь решаем через уравнение :
Пускай один из углов будет равен x , а второй x+6
Тогда получим уравнение: x + (x+6)= 90
Раскрываем скобки: x+x+6=90
2x= 90-6
2x=84
x=42 ( один из острых углов)
Теперь подставим в выражение x+6 ( второй острый угол) и получим
42+6 = 48
ответ: Остр.угол 1 = 42 Остр.угол 2= 48