если их можно совместить и при наложении они совпадают.
Если при наложении они совпадают. Равные отрезки имеют одинаковые длины.
Если при наложении они совпадают. т.е. вершины совпадут. а лучи, выходящие из вершин, тоже при наложении совпадают. Равные углы имеют равные градусные меры.
Треугольники называют равными, если при наложении друг на друга они совпадают. У равных треугольников все три стороны одного равны трем сторонам другого. То же можно сказать и об углах.
2 представьте, построили два равных прямоугольных треугольника, у которых катеты по 3 см 4 см, а гипотенузы по 5 см. у меня нет возможности попасть в приложение. поэтому не могу Вам кинуть рисунок. Но это не сложно. АВ=ТР= 3 см, ВС= РК=4см, АС=ТК=5 см, и тогда треугольники АВС и ТРК равны.
обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
или
sinx=sqrt(1-cos^2x)
sinx=sqrt(1-1/25)=2sqrt(6)/5
а дальше по основной формуле для нахождения тангенса
или
а
i\
i \
i \
└ㅡ \ㅡ ㅡ ㅡ ㅡ e
c в
дано : ∠abe = 150º, ac + ab = 12cм
найти : ав
решение : т.к. ∠abe = 150º , то ∠abс = 30º ⇒ ас = 0.5 * ав
если их можно совместить и при наложении они совпадают.
Если при наложении они совпадают. Равные отрезки имеют одинаковые длины.
Если при наложении они совпадают. т.е. вершины совпадут. а лучи, выходящие из вершин, тоже при наложении совпадают. Равные углы имеют равные градусные меры.
Треугольники называют равными, если при наложении друг на друга они совпадают. У равных треугольников все три стороны одного равны трем сторонам другого. То же можно сказать и об углах.
2 представьте, построили два равных прямоугольных треугольника, у которых катеты по 3 см 4 см, а гипотенузы по 5 см. у меня нет возможности попасть в приложение. поэтому не могу Вам кинуть рисунок. Но это не сложно. АВ=ТР= 3 см, ВС= РК=4см, АС=ТК=5 см, и тогда треугольники АВС и ТРК равны.
3.
1.FDE
2.KNM
3.SKT
DBC
5. MKC
Объяснение:
обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
или
sinx=sqrt(1-cos^2x)
sinx=sqrt(1-1/25)=2sqrt(6)/5
а дальше по основной формуле для нахождения тангенса
или
а
i\
i \
i \
└ㅡ \ㅡ ㅡ ㅡ ㅡ e
c в
дано : ∠abe = 150º, ac + ab = 12cм
найти : ав
решение : т.к. ∠abe = 150º , то ∠abс = 30º ⇒ ас = 0.5 * ав
ac + ab = 12cм
0.5 * ав + ав = 12
1.5 ав = 12
ав = 12 / 1.5
ab = 8
ответ : ав = 8 см