Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
ответ: 3:4
Объяснение:
радиус (5х) описанной около прямоугольного треугольника окружности равен половине гипотенузы, т.е. гипотенуза = 10х;
радиус (2х) вписанной в прямоугольный треугольник окружности можно вычислить по формуле: r = (a+b-c)/2
2x = (a+b-10x)/2
4x = a+b-10x
a+b = 14x
и по т. Пифагора a^2+b^2 = 100x^2
(a+b)^2 - 2ab = 100x^2
196x^2 - 100x^2 = 2ab
ab = 48x^2
(14x-b)*b = 48x^2
b^2 - b*14x + 48x^2 = 0
D=196x^2-4*48x^2=4x^2
b1 = (14x-2x)/2 = 6x ---> a1 = 14x-6x = 8x
b2 = (14x+2x)/2 = 8x ---> a2 = 14x-8x = 6x
т.е. меньший катет (6х),
больший катет (8х),
отношение 6:8 или 3:4
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.