Поскольку стороны прямоугольника попарно равны, то проще вычислять через полупериметр: р=Р/2; 1. а) р=48/2=24 см, вторая сторона 24-10=14 см, площадь - 10*14=140 см²; б) р=36/2=18 см, вторая сторона - 18-10=8 см, площадь - 10*8=80 см².
2. а) р=20/2=10 см, 10-2=8 см - сумма сторон при их равенстве между собой, 8/2=4 см - одна сторона, 4+2=6 см - другая сторона, 6*4=24 см² - площадь; б) р=10 см, 10-4=6 см - сумма сторон при их равенстве, 6/2=3 см - одна сторона, 3+7=7 см - другая сторона, 3*7=21 см² - площадь.
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
1.
а) р=48/2=24 см, вторая сторона 24-10=14 см, площадь - 10*14=140 см²;
б) р=36/2=18 см, вторая сторона - 18-10=8 см, площадь - 10*8=80 см².
2.
а) р=20/2=10 см, 10-2=8 см - сумма сторон при их равенстве между собой, 8/2=4 см - одна сторона, 4+2=6 см - другая сторона, 6*4=24 см² - площадь;
б) р=10 см, 10-4=6 см - сумма сторон при их равенстве, 6/2=3 см - одна сторона, 3+7=7 см - другая сторона, 3*7=21 см² - площадь.
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.