3,5 см; 3 см; 3,5 см.
Объяснение:
1. Боковые стороны равнобедренного треугольника имеют равные длины, а = 7 см, найдём длину основания b:
b = Р - 2•а = 20 - 2•7 = 6 (см).
2. В любом треугольнике три средние линии, каждая из них параллельна одной из сторон треугольника.
Если речь о средней линии, параллельной основанию, то её длина по теореме равна половине длины основания, т.е. 6:2 = 3(см).
Если речь о средней линии, параллельной боковой стороне, то её длина по теореме равна половине длины боковой стороны, т.е. 7:2 = 3,5 (см).
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см
3,5 см; 3 см; 3,5 см.
Объяснение:
1. Боковые стороны равнобедренного треугольника имеют равные длины, а = 7 см, найдём длину основания b:
b = Р - 2•а = 20 - 2•7 = 6 (см).
2. В любом треугольнике три средние линии, каждая из них параллельна одной из сторон треугольника.
Если речь о средней линии, параллельной основанию, то её длина по теореме равна половине длины основания, т.е. 6:2 = 3(см).
Если речь о средней линии, параллельной боковой стороне, то её длина по теореме равна половине длины боковой стороны, т.е. 7:2 = 3,5 (см).