ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
192см²
Объяснение:
Дано
ABCDA1B1C1D1 - параллелепипед
AD=4см
DC=12cм
А1С=13 см.
Sпол=?
Решение.
∆ADC- прямоугольный
По теореме Пифагора найдем гипотенузу
АС²=АD²+DC²=4²+12²=16+144=160 см
AC=√160 см
∆АА1С- прямоугольный.
По теореме Пифагора найдем катет
АА1=А1С²-АС²=13²-(√160)²=169-160=9
АА1=√9=3см.
Sбок=Рaвсd*AA1
Paвсd=2*4+2*12=8+24=32 см периметр прямоугольника АВСD.
Sбок=32*3=96см². площадь боковой поверхности параллелепипеда
Sосн=АD*DC=4*12=48 см² площадь прямоугольника ABCD.
Sпол=2*Sосн+Sбок=2*48+96=192 см² площадь полной поверхности параллелепипеда.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.