Точка M равноудалена от сторон ромба и находится на расстоянии 2 см от плоскости ромба. Найдите расстояние от точки M до стороны ромба, если его диагонали равны 16 см и 12 см.
-------
Обозначим ромб АВСД,
Расстояние от точки до прямой равно длине отрезка, проведённого перпендикулярно от точки к данной прямой. =>
отрезок МН перпендикулярен сторонам ромба. МН⊥АВ.
Расстояние от точки до плоскости - длина перпендикуляра между точкой и плоскостью. ⇒ МО перпендикулярен каждой прямой, проходящей через О в плоскости ромба.
т.М равноудалена от сторон ромба, =>
длина проекции ОН отрезка МН равна радиусу вписанной в этот ромб окружности, т.е. ОН равен половине высоты ромба.
а) Диагонали ромба пересекаются под прямы углом и делят его на равные прямоугольные треугольники с катетами, равными их половине.
Искомое расстояние найдём по теореме Пифагора из прямоугольного треугольника с гипотенузой =2см и катетов, один из которых равен этому расстоянию, а второй перпендикуляру опущенному из точки пересечения диагоналей ромба на его сторону
катет лежащий против угла 30 градусов равен половине гипотенузы
диагонали ромба перпендикулярны друг другу
половины диагоналей ромба равны 2 и 2√3 см
площадь ромба = 8√3 кв.см
перпендикуляр из точки пересечения диагоналей ромба на боковую сторону ромба =х
0,5 * 4 * х *4 = 8√3 х=√3
искомое расстояние = √(2^2 - (√3)^2) = √(4 - 3) = 1 см
Точка M равноудалена от сторон ромба и находится на расстоянии 2 см от плоскости ромба. Найдите расстояние от точки M до стороны ромба, если его диагонали равны 16 см и 12 см.
-------
Обозначим ромб АВСД,
Расстояние от точки до прямой равно длине отрезка, проведённого перпендикулярно от точки к данной прямой. =>
отрезок МН перпендикулярен сторонам ромба. МН⊥АВ.
Расстояние от точки до плоскости - длина перпендикуляра между точкой и плоскостью. ⇒ МО перпендикулярен каждой прямой, проходящей через О в плоскости ромба.
т.М равноудалена от сторон ромба, =>
длина проекции ОН отрезка МН равна радиусу вписанной в этот ромб окружности, т.е. ОН равен половине высоты ромба.
а) Диагонали ромба пересекаются под прямы углом и делят его на равные прямоугольные треугольники с катетами, равными их половине.
По т.Пифагора АВ=√(ОН²+ОВ²)=√(36+64)=10 см
б) По ТТП МН⊥АВ => ОН⊥АВ.
ОН можно найти из площади ∆ АОВ
Ѕ(АОВ)=ОА•ОВ:2=24
ОН=24•2:2=4,8
По т.Пифагора МН=√(MO²+OH²)=√(4+23,04)=5,2 см
катет лежащий против угла 30 градусов равен половине гипотенузы
диагонали ромба перпендикулярны друг другу
половины диагоналей ромба равны 2 и 2√3 см
площадь ромба = 8√3 кв.см
перпендикуляр из точки пересечения диагоналей ромба на боковую сторону ромба =х
0,5 * 4 * х *4 = 8√3 х=√3
искомое расстояние = √(2^2 - (√3)^2) = √(4 - 3) = 1 см
ответ: 1 см