1)Пусть х см - a
(3х)см-b
S=ab
3x^2=27
x1=-3 -не удовлетворяет,так как <0
x2=3
а=3 см
b=9 см
ответ:3 см;9 см
2)Sквадрата=а^2
а^2=64 см
а=8 см
Р=а*4
Р=8*4=32 см
ответ:32 см
3)У ромба все стороны равны,а сторон 4.
Р=4*а
а=16:4
а=4 см
S=а*h(высота)
16=4*h
h=4 см
ответ:4 см
4)S=1/2 *AB(гипотенуза)*h(высота)
1/2*АВ*4=40
АВ=20 см
ответ:20 см
5)Так как трапеция прямоугл.,то большая сторона и является высотой
S=(ВС+AD)/2 *h(высота)
S=(5+13)/2*10
S=90 см^2
ответ:90 см^2
6)Сумма углов многоугольника равна 180*(n-2),где n-количество сторон
у нас сумма углов 180*3=540 градусов
Пусть х градусов приходится на одну часть
15х=36
х=36 градусов
36 градусов-первый угол
72 градусов-2 угол
108 градусов-3 угол
144 градуса-4 угол
180 градуса-5 угол
8)пусть 1 катет-х см, 2 катет-(х+2)
По теореме Пифагора находим х
х^2+x^2+4x+4=100
x^2+2x-48=0
D=49
x1=-8 - <0 не удовлетворяет
х2=6
1 катет-6 см
2 катет-8 см
Площадь прямоугольного треугольника равна половине произведения катетов.
S=6*8/2=24 кв.см.
ответ:24 кв.см.
ВР/РЕ = 15/2.
Объяснение:
По теореме Менелая в треугольнике СВЕ:
(СМ/МВ)*(ВР/РЕ)*(ЕА/АС) = 1. =>
Подставим известные значения:
(1/3)*(ВР/РЕ)*(2/5) = 1. =>
ВР/РЕ = 15/2. Это ответ.
А если теоремы не знаете, докажем ее.
Проведем ЕН параллельно ВС.
ΔСМА∼ΔЕНА по двум углам (угол CАМ — общий, а ∠НЕА=∠ВСА как соответственные при параллельных прямых СВ и ЕН и секущей СЕ). Следовательно:
СM/ЕН=АM/АН=АС/АЕ =>
ЕН=СM⋅АЕ/AС. (1)
ΔBMP∼ΔHPE по двум углам (∠BPM=∠HPE как вертикальные, а ∠PEH=∠PBM как внутренние накрест лежащие при параллельных прямых BC и HE и секущей BE).
Следовательно:
BM/EH=MP/HP=BP/PE =>
EH=BM⋅PE/BP. (2)
Приравняем (1) и (2) и разделим обе части на левую:
СM⋅АЕ/AС = BM⋅PE/BP => (СM⋅АЕ⋅BP)/(AC⋅BM⋅PE) = 1 или
(СM/МВ)⋅(ВР⋅PЕ)/(ЕA⋅АС) = 1.
Что и требовалось доказать.
1)Пусть х см - a
(3х)см-b
S=ab
3x^2=27
x1=-3 -не удовлетворяет,так как <0
x2=3
а=3 см
b=9 см
ответ:3 см;9 см
2)Sквадрата=а^2
а^2=64 см
а=8 см
Р=а*4
Р=8*4=32 см
ответ:32 см
3)У ромба все стороны равны,а сторон 4.
Р=4*а
а=16:4
а=4 см
S=а*h(высота)
16=4*h
h=4 см
ответ:4 см
4)S=1/2 *AB(гипотенуза)*h(высота)
1/2*АВ*4=40
АВ=20 см
ответ:20 см
5)Так как трапеция прямоугл.,то большая сторона и является высотой
S=(ВС+AD)/2 *h(высота)
S=(5+13)/2*10
S=90 см^2
ответ:90 см^2
6)Сумма углов многоугольника равна 180*(n-2),где n-количество сторон
у нас сумма углов 180*3=540 градусов
Пусть х градусов приходится на одну часть
15х=36
х=36 градусов
36 градусов-первый угол
72 градусов-2 угол
108 градусов-3 угол
144 градуса-4 угол
180 градуса-5 угол
8)пусть 1 катет-х см, 2 катет-(х+2)
По теореме Пифагора находим х
х^2+x^2+4x+4=100
x^2+2x-48=0
D=49
x1=-8 - <0 не удовлетворяет
х2=6
1 катет-6 см
2 катет-8 см
Площадь прямоугольного треугольника равна половине произведения катетов.
S=6*8/2=24 кв.см.
ответ:24 кв.см.
ВР/РЕ = 15/2.
Объяснение:
По теореме Менелая в треугольнике СВЕ:
(СМ/МВ)*(ВР/РЕ)*(ЕА/АС) = 1. =>
Подставим известные значения:
(1/3)*(ВР/РЕ)*(2/5) = 1. =>
ВР/РЕ = 15/2. Это ответ.
А если теоремы не знаете, докажем ее.
Проведем ЕН параллельно ВС.
ΔСМА∼ΔЕНА по двум углам (угол CАМ — общий, а ∠НЕА=∠ВСА как соответственные при параллельных прямых СВ и ЕН и секущей СЕ). Следовательно:
СM/ЕН=АM/АН=АС/АЕ =>
ЕН=СM⋅АЕ/AС. (1)
ΔBMP∼ΔHPE по двум углам (∠BPM=∠HPE как вертикальные, а ∠PEH=∠PBM как внутренние накрест лежащие при параллельных прямых BC и HE и секущей BE).
Следовательно:
BM/EH=MP/HP=BP/PE =>
EH=BM⋅PE/BP. (2)
Приравняем (1) и (2) и разделим обе части на левую:
СM⋅АЕ/AС = BM⋅PE/BP => (СM⋅АЕ⋅BP)/(AC⋅BM⋅PE) = 1 или
(СM/МВ)⋅(ВР⋅PЕ)/(ЕA⋅АС) = 1.
Что и требовалось доказать.