2) Т.к. треугольник равнобедренный, то высота делит его основание пополам, т.е. основание (обозначим его AO) одного из двух прямоугольных треугольников равно: AO=AC/2=12/2=6 см.
3) Рассмотрим один из прямоугольных треугольников (обозначим его AOB)
Мы знаем, чему равны оба катета прямоугольного треугольника (АО=6 см, ОB=h=8 см), теперь по теореме Пифагора найдём его гипотенузу AB:
AB=√(AO²+ОС²)=√(6²+8²)=√(36+64)=√100=10 см.
Т.к. треугольник равнобедренный, то BC - тоже 10 см.
4) Периметр равнобедренного треугольника P=AB+BC+AC=10+10+12=32 см.
Сумма смежных углов равна 180°
∠В и внешний ∠ при вершине В - смежные.
=> ∠В = 180° - 120° = 60°
∠А = ∠С, по свойству равнобедренного треугольника.
180° - 60° = 120° - сумма ∠А и ∠С
∠А = ∠С = 120°/2 = 60°.
Вывод:
этот треугольник - равносторонний (∠А = ∠В = ∠С = 60°)
ответ: 60°, 60°, 60°.
Внешний угол треугольника равен сумме двух внутренних углов треугольника несмежных с ним.
=> ∠А + ∠С = 120°
∠А = ∠С, по свойству равнобедренного треугольника.
=> ∠А = ∠С = 120°/2 = 60°
Сумма углов треугольника равна 180°
=> ∠В = 180˚ - (60˚ + 60˚) = 60˚
Вывод:
этот треугольник - равносторонний (∠А = ∠В = ∠С = 60°)
ответ: 60°, 60°, 60°.
h=S/(½*a)=48/(0.5*12)=48/6=8 см
2) Т.к. треугольник равнобедренный, то высота делит его основание пополам, т.е. основание (обозначим его AO) одного из двух прямоугольных треугольников равно: AO=AC/2=12/2=6 см.
3) Рассмотрим один из прямоугольных треугольников (обозначим его AOB)
Мы знаем, чему равны оба катета прямоугольного треугольника (АО=6 см, ОB=h=8 см), теперь по теореме Пифагора найдём его гипотенузу AB:
AB=√(AO²+ОС²)=√(6²+8²)=√(36+64)=√100=10 см.
Т.к. треугольник равнобедренный, то BC - тоже 10 см.
4) Периметр равнобедренного треугольника P=AB+BC+AC=10+10+12=32 см.
ответ: P=32 см