Треугольник АВС - равнобедренный. Из свойств равнобедренного треугольника следует:
1) Высота совпадает с медианой. Медиана делит основание пополам (из определения); 2) Биссектриса, медиана и высота, проведенные к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
Площадь треугольника S= abc/4R . Поскольку 2 стороны равнобедренного треугольника равны между собой, для нашего случая можно преобразовать: S=b^2*c/4R (где AB=BC=b, AC= c)
Для начала найдём неизвестные элементы треугольника АВС. Если угол В=30 градусов, то угол А=60 градусов. Если АС=2, то АВ=2*2=4, потому что катет АС лежит против угла в 30 градусов. По теореме Пифагора найдём ВС, ВС=. Теперь отметим точки Е и F. АЕ=ЕВ=2, CF=FB=. Вектор EF = вектор ЕВ + вектор BF. Ну а теперь давайте искать произведения векторов. 1) вектор ВА * вектор ВС = |ВА|*|ВС|*cosB= 2) вектор ВА * вектор АС = |ВА|*|АС|*cos(180-А)= Мы взяли косинус угла 180-А, потому что нам нужно было, чтобы векторы выходили из одной точки. Мы сделали параллельный перенос, и именно так и получилось. 3) вектор EF* вектор ВС= (вектор ЕВ + вектор BF)*вектор ВС=вектор ЕВ*вектор ВС + вектор BF* вектор ВС = |EB|*|BC|*cos(180-B)+|BF|*|BC|*cos0=
Если не сработал графический редактор, то обновите страницу
1) Высота совпадает с медианой. Медиана делит основание пополам (из определения);
2) Биссектриса, медиана и высота, проведенные к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
Площадь треугольника S= abc/4R . Поскольку 2 стороны равнобедренного треугольника равны между собой,
для нашего случая можно преобразовать: S=b^2*c/4R (где AB=BC=b, AC= c)
Из 1: AD = 1/2AC = 4
По теореме Пифагора: QD^2 = AQ^2-AD^2 = R^2 - AD^2 , QD = 3
Из 2: BD = BQ+QD= R + QD= 8
По теореме Пифагора: AB^2= BD^2 + AD^2, AB = 4 корня из 5
Отсюда площадь треугольника S = 16*5*8/4*5 = 32
Ну а теперь давайте искать произведения векторов.
1) вектор ВА * вектор ВС = |ВА|*|ВС|*cosB=
2) вектор ВА * вектор АС = |ВА|*|АС|*cos(180-А)=
Мы взяли косинус угла 180-А, потому что нам нужно было, чтобы векторы выходили из одной точки. Мы сделали параллельный перенос, и именно так и получилось.
3) вектор EF* вектор ВС= (вектор ЕВ + вектор BF)*вектор ВС=вектор ЕВ*вектор ВС + вектор BF* вектор ВС = |EB|*|BC|*cos(180-B)+|BF|*|BC|*cos0=
Если не сработал графический редактор, то обновите страницу