На стороні BC трикутника ABC вибрано точку M так, що BM:MC = 1:7. Через точку M паралельно до сторін AB і AC проведено відрізки, кінці яких лежать на сторонах AC і AB. Знайти довжини цих відрізків, якщо AB = 32 см, AC = 8 см
Таблицы не вижу. Признаки равенства треугольников таковы:
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны. 3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны. Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны. 2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны. 3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны. 4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны. 5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны. И т.д.
Сказка о треугольниках Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры Меня знает каждый школьник, И зовусь я треугольник. У меня вершины три, Также три и стороны. Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным. Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить. Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам! Все также скачет по углам Веселая, смешная крыса. Мы делим радость пополам, А делит угол биссектриса. Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы: -если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны; - если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны; - если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны. Много времени проводят вместе друзья и встречают новых измени немного текст под себя
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны.
2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны.
3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны.
4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны.
5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны.
И т.д.
Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры
Меня знает каждый школьник,
И зовусь я треугольник.
У меня вершины три,
Также три и стороны.
Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным.
Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить.
Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам!
Все также скачет по углам
Веселая, смешная крыса.
Мы делим радость пополам,
А делит угол биссектриса.
Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы:
-если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны;
- если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны;
- если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны.
Много времени проводят вместе друзья и встречают новых
измени немного текст под себя