Начнем с самого простого: Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности. Rш=10см. Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см. Тогда его сторона равна Rк= 10√2см. Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3. Но можно и без формулы: по теореме косинусов. a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см. ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
Обозначим параллелограмм ABCD так, что углы A и C - тупые. Проведем биссектрисы AK, и CM. Т.к. ABCD - параллелограмм, то углы DAB и BCD равны, и соответственно т.к. AK и CM биссектрисы, то углы
<DAK=<KFB=1/2 <DAB (здесь и далее "<" - значёк угла)
<BCM=<MCD=1/2 < BCD, и значит
<DAK=<KFB=<BCM=<MCD
углы <BAK и <AKD - накрестлежащие, следовательно <BAK = <AKD
углы <KCM и <BMC - накрестлежащие, следовательно <KCM = <BMC
в итоге <AKD=<DAK, <BMC=<BCM, треугольники KDA и MBC - равнобедренные, отсюда AD=DK и BM=BC.
Вводим условные единицы длины, с учетом того, что биссекутрисса делит противоположную сторону в соотношениие 4:5 так, что BM=5уе, AM=4уе, далее очевидно периметр параллелограмма равен 28 уе, 1уе=700/28=25
Очевидно из рисунка - меньшая сторона параллелограмма равна 5уе=5*25=125
Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности.
Rш=10см.
Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см.
Тогда его сторона равна Rк= 10√2см.
Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3.
Но можно и без формулы: по теореме косинусов.
a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см.
ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
700/28*5=125
Объяснение:
Обозначим параллелограмм ABCD так, что углы A и C - тупые. Проведем биссектрисы AK, и CM. Т.к. ABCD - параллелограмм, то углы DAB и BCD равны, и соответственно т.к. AK и CM биссектрисы, то углы
<DAK=<KFB=1/2 <DAB (здесь и далее "<" - значёк угла)
<BCM=<MCD=1/2 < BCD, и значит
<DAK=<KFB=<BCM=<MCD
углы <BAK и <AKD - накрестлежащие, следовательно <BAK = <AKD
углы <KCM и <BMC - накрестлежащие, следовательно <KCM = <BMC
в итоге <AKD=<DAK, <BMC=<BCM, треугольники KDA и MBC - равнобедренные, отсюда AD=DK и BM=BC.
Вводим условные единицы длины, с учетом того, что биссекутрисса делит противоположную сторону в соотношениие 4:5 так, что BM=5уе, AM=4уе, далее очевидно периметр параллелограмма равен 28 уе, 1уе=700/28=25
Очевидно из рисунка - меньшая сторона параллелограмма равна 5уе=5*25=125