На сторонах AB и BC параллелограмма ABCD расположены точки N и M соответственно, причём AN : NB = 3 : 2, BM : MC = 2 : 5. Прямые AM и DN пересекаются в точке O. Найдите отношения OM : OA и ON : OD.
Следовательно, треугольники ACE и CED равны, так как у них равны стороны и угол между ними. Следовательно, площадь AEC = CED = 85
Из формулы площади прямоугольного треугольника S = a*b/2 найдём AE:
AE = S*2/EC = 85 * 2 / 17 = 10
AE ║BC так как это трапеция. Опустим высоту из точки А на прямую BC. Получим прямоугольный треугольник AOB (представим его мысленно). Так вот, его площадь надо будет вычесть из площади прямоугольника AECO. Вычислим:
Продолжения боковых сторон трапеции ABCD (рис.148) пересекаются в точке О. Найдите ВО и отношение площадей треугольников ВОС и AOD, если AD = 5см, ВС = 2см, АО = 25см.
1
СМОТРЕТЬ ОТВЕТ
ответ, проверенный экспертом
4,0/5
217
sav94
хорошист
121 ответов
58.1 тыс. пользователей, получивших
треугольники AOD и BOC подобны по трем углам:
уг.AOD-общий
уг.OCB=уг.ODA (они прямые)
уг.OBC=уг.OAD (вытекает из предыдущих равенств)
Т.к. эти треугольники подобны, отношения соответсвующих сторон равны, т.е.
Итак, нам дана площадь ΔACE равная 85.
∠AEC = ∠CED = 90
AE = ED
CE общая для ΔACE и ΔCED
Следовательно, треугольники ACE и CED равны, так как у них равны стороны и угол между ними. Следовательно, площадь AEC = CED = 85
Из формулы площади прямоугольного треугольника S = a*b/2 найдём AE:
AE = S*2/EC = 85 * 2 / 17 = 10
AE ║BC так как это трапеция. Опустим высоту из точки А на прямую BC. Получим прямоугольный треугольник AOB (представим его мысленно). Так вот, его площадь надо будет вычесть из площади прямоугольника AECO. Вычислим:
Площадь AOB = 17*(10-6)/2=34
Итак, общая площадь трапеции равна:
17*10 - 34 + 85 = 221
ответ: 221
Поиск...
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Участник Знаний
26.03.2012
Геометрия
5 - 9 классы
ответ дан • проверенный экспертом
Продолжения боковых сторон трапеции ABCD (рис.148) пересекаются в точке О. Найдите ВО и отношение площадей треугольников ВОС и AOD, если AD = 5см, ВС = 2см, АО = 25см.
1
СМОТРЕТЬ ОТВЕТ
ответ, проверенный экспертом
4,0/5
217
sav94
хорошист
121 ответов
58.1 тыс. пользователей, получивших
треугольники AOD и BOC подобны по трем углам:
уг.AOD-общий
уг.OCB=уг.ODA (они прямые)
уг.OBC=уг.OAD (вытекает из предыдущих равенств)
Т.к. эти треугольники подобны, отношения соответсвующих сторон равны, т.е.
BC/AD=BO/AO
подставляем числа и находим BO:
2/5=BO/25
5*BO=2*25
5*BO=50
BO=10
Теперь находим отношение площадей:
S(BOC)/S(AOD)=(1/2*OC*BC)/(1/2*OD*AD)=OC*BC/OD*AD=OC/OD*BC/AD
BC/AD=2/5
так как отношение соответсвующих сторон равны OC/OD=BC/AD=2/5
S(BOC)/S(AOD)=2/5*2/5=4/25=0,16
ответ: BO=10, отношение площадей = 0,16.