На сторонах ас і вс трикутника авс позначили точки d i e відповідно так, що кут сае = кут свdя відомо, що ав=8 см, вс=12 см, cd =3см. знайдіть відрізок de
Треугольники AQC и DQB очевидно равны по трем сторонам, а значит совмещаются поворотом вокруг точки Q (синий и красный треугольники). Значит их медианы QN и QM тоже совместятся при этом повороте, т.е. ∠MQN равен углу между прямыми AC и DB (т.к. диагональ AC переходит в DB).
Аналогично, треугольники APC и BPD совместятся поворотом вокруг точки Р, т.е., ∠MPN между их медианами РМ и РN тоже равен углу между диагоналями четырехугольника. В любом случае, получаем либо ∠MPN=∠MQN, либо ∠MPN+∠MQN=180°, что и означает, что точки PQМN лежат на одной окружности.
(а) Площадь пола команды считаем в см 250х150=37500 см кв.
Считаем площадь одной плитки 30х30=900 см кв
ПЛ пола делим на ПЛ плитки 37500/900=41.666, округляем 42 плитки
(б) 3,2 (м) = 3,2*100 = 320 (см).
2,5 (м) = 2,5*100 = 250 (см).
Площадь прямоугольника равна произведению его смежных сторон.
Так как стена имеет форму прямоугольника, то его площадь равна -
250 (см)*320 (см) = 80000 (см²).
А площадь одной прямоугольной плитки равна -
20 (см)*10 (см) = 200 (см²).
Чтобы найти число плиток, площадь стенки разделим на площадь одной плитки -
80000 (см²) : 200 (см²) = 400 (плиток).
400 плиток.
Аналогично, треугольники APC и BPD совместятся поворотом вокруг точки Р, т.е., ∠MPN между их медианами РМ и РN тоже равен углу между диагоналями четырехугольника. В любом случае, получаем либо ∠MPN=∠MQN, либо ∠MPN+∠MQN=180°, что и означает, что точки PQМN лежат на одной окружности.