На сторонах BC, CA и AB треугольника ABC отмечены точки D, E и F соответственно. Прямые BE и CF пересекаются в точке P, ∠FDB=∠EDC=10∘, ∠PDE=95∘. Найдите ∠PDA.
Решения этих задач опирается на свойства углов параллелограмма:
противоположные углы равны;
сумма соседних углов 180°.
Исходя из этого решаем:
1). если данная сумма не равна 180°, то эти углы противоположны, следовательно равны - 120/2=60° - одна пара противоположных углов, 180-60=120° - вторая пара противоположных углов;
2). если один угол меньше другого, то эти углы соседние, следовательно - один угол Х, второй угол (Х-40), их сумма -
Х+(Х-40)=180, 2Х=140, Х=70° - одна пара углов, 180-70=110° - вторая пара углов.
3). один угол - Х, второй угол - 3Х, сумма - Х+3Х=180, Х=45° - одна пара углов, 180-45=135° - вторая пара углов.
2.
ABCD - параллелограмм
BC || AD; ED - секущая, тогда
∠ADE=∠DEC=55°(внутренние накрест лежащие)
ΔECD - равнобедренный значит
∠DEC=∠EDC=55°
∠BED=180°-55°=125°(смежные)
∠DEC+∠EDC+∠C=180°(сумма всех углов треугольника)
55°+55°+∠C=180°, отсюда ∠C=70°
∠C=∠А=70°
∠А+∠B=180°(свойство параллелограмма)
70°+∠B=180°, значит ∠B=110°
∠B=∠D=110°
ответ: ∠DEC=∠EDC=55°;∠C=∠А=70°; ∠B=∠D=110°
3.
RM - биссектриса, значит
∠LRM=∠MRS=90°/2=45°
∠LMR=180°-(45°+90°)=45° (сумма всех углов треугольника)
ответ: ∠LRM=∠MRS=45°;∠LMR=45°;∠K=∠S=90°
1) 60,120,60,120
2) 70,110,70,110
3) 45,135,45,135
Объяснение:
Решения этих задач опирается на свойства углов параллелограмма:
противоположные углы равны;
сумма соседних углов 180°.
Исходя из этого решаем:
1). если данная сумма не равна 180°, то эти углы противоположны, следовательно равны - 120/2=60° - одна пара противоположных углов, 180-60=120° - вторая пара противоположных углов;
2). если один угол меньше другого, то эти углы соседние, следовательно - один угол Х, второй угол (Х-40), их сумма -
Х+(Х-40)=180, 2Х=140, Х=70° - одна пара углов, 180-70=110° - вторая пара углов.
3). один угол - Х, второй угол - 3Х, сумма - Х+3Х=180, Х=45° - одна пара углов, 180-45=135° - вторая пара углов.