На сторонах кута А відкладено відрізки AM = MB = 5 см і AP= PC = 8 см. Знайдіть довжину відрізка РМ, якщо відрізок BC довший за відрізок AB на 4 см. решить задачу желательно с рисунком
Опустим из концов верхнего основания на нижнее перпендикуляры, получим прямоугольник со сторонами: а=6 см, h. основание "разделено" на отрезки b: х см, 6 см, 19-(6+x). (13-x) см х см -отрезок нижнего основания слева, (13-х) см отрезок нижнего основания справа. 12 см -"левая" боковая сторона, 5 см -"правая" боковая сторона (без разницы какая сколько) по теореме Пифагора: из"левого треугольника" h²=12²-x² из "правого треугольника" h²=5²-(13-x)² 12²-x²=5²-(13-x)² 144-x²=25-169+26x-x² 26x=288. x=144/13 h²=12²-(144/13)² h²=144-144²/169 h²=(144*169-144²)/169 h²=144*(169-144)/169 h=12*5/13, h=60/13 см S=(6+19)*(60/13)/2 S=25*60/26 S=25*30/13 cм² S=750/13 см²
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
основание "разделено" на отрезки b: х см, 6 см, 19-(6+x). (13-x) см
х см -отрезок нижнего основания слева, (13-х) см отрезок нижнего основания справа. 12 см -"левая" боковая сторона, 5 см -"правая" боковая сторона
(без разницы какая сколько)
по теореме Пифагора: из"левого треугольника" h²=12²-x²
из "правого треугольника" h²=5²-(13-x)²
12²-x²=5²-(13-x)²
144-x²=25-169+26x-x²
26x=288. x=144/13
h²=12²-(144/13)²
h²=144-144²/169
h²=(144*169-144²)/169
h²=144*(169-144)/169
h=12*5/13, h=60/13 см
S=(6+19)*(60/13)/2
S=25*60/26
S=25*30/13 cм²
S=750/13 см²
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.