угол при вершине осевого сечения α=90° , то есть прямой угол. значит образующая конуса наклонена под углом 45° к плоскости основания и сечение выглядит как равнобедренный прямоугольный треугольник.
высота конуса равна радиусу основания конуса ,H=R=6см
так как вершина конуса перпендикулярно основанию конуса, и угол при вершине между высотой и образующей конуса 180°-90°-45°=45°
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Объяснение:
D=2R=12см
α=90°
V- ?
радиус основания конуса
R=D/2=12/2=6 см
угол при вершине осевого сечения α=90° , то есть прямой угол. значит образующая конуса наклонена под углом 45° к плоскости основания и сечение выглядит как равнобедренный прямоугольный треугольник.
высота конуса равна радиусу основания конуса ,H=R=6см
так как вершина конуса перпендикулярно основанию конуса, и угол при вершине между высотой и образующей конуса 180°-90°-45°=45°
объем конуса
V=1/3 ×πR²×H=1/3 ×π×6²×6=72π см³
или V=72π=72×3,14=226,08 см³
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).