1. т.к трапеция р/б, то углы при основаниях равны; углы, прилежащие к основанию, в сумме 180, т.е угол у второго основания 180-75=105. два угла по сто пять и два по 75 2. угол С равен 90, СД - катет против угла в 30 градусов, значит, равен 0,5 гипотенузы АД, т.е АД = 8.диагонали прямоугольника равны. 3. написаны не те углы 4. диагонали в ромбе пересекаются под прямым углом, делят ромб на равные треугольники и являются биссикриссами. тогда угол всо - 60/2=30, угол между диагоналями 90, а овс=180-90-30=60
Пусть трапеция АВСД, где АД=10, а ВС меньшее основание. Так как трапеция равнобедренная, то АВ=СД. Диагональ АС делит угол ВАД пополам, то есть углы ВАС и САД равны. Так как АВСД трапеция, то АД параллельна ВС, значит углы САД и ВСА накрест лежащие углы, а накрест лежащие углы равны. Значит треугольник АВС равнобедренный, так как у него два равных угла при основании, из этого следует, что сторона АВ равна стороне ВС, а значит и стороне СД трапеции, так как трапеция равнобедренная. Пусть длина этих равных сторон будет х, тогда х+х+х+10=28 (периметр трапеции, который нам известен из условия задачи). Тогда х=(28-10)/3=6 см. ответ: длина меньшего основания 6 см
два угла по сто пять и два по 75
2. угол С равен 90, СД - катет против угла в 30 градусов, значит, равен 0,5 гипотенузы АД, т.е АД = 8.диагонали прямоугольника равны.
3. написаны не те углы
4. диагонали в ромбе пересекаются под прямым углом, делят ромб на равные треугольники и являются биссикриссами.
тогда угол всо - 60/2=30, угол между диагоналями 90, а овс=180-90-30=60
Пусть длина этих равных сторон будет х, тогда х+х+х+10=28 (периметр трапеции, который нам известен из условия задачи). Тогда х=(28-10)/3=6 см.
ответ: длина меньшего основания 6 см