На сторонах кута М відкладено рівні відрізки МА і МВ. На бісектрисі кута М відкладено відрізки МК і МС, причому МС > MK. Доведіть рівність трикутників СКВ і СКА.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Тогда ∠ACB=180°-∠CAD-∠CBE=112°, но ∠ACB=∠ACD+∠DCE+∠ECB
2) Треугольник ADC - равнобедренный с основанием АС, так как AD=DC по условию. Тогда ∠DCA=∠CAD=42°, так как это углы при основании равнобедренного треугольника и ∠CAD=42° по условию.
3) Треугольник CEB - равнобедренный с основанием CB, так как CE=EB по условию. Тогда ∠ECB=∠CBE=26°, так как это углы при основании равнобедренного треугольника и ∠CBE=26° по условию.
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.
44°
Объяснение:
1) Сумма углов треугольника=180°
∠CAD=42°, ∠CBE=26°
Тогда ∠ACB=180°-∠CAD-∠CBE=112°, но ∠ACB=∠ACD+∠DCE+∠ECB
2) Треугольник ADC - равнобедренный с основанием АС, так как AD=DC по условию. Тогда ∠DCA=∠CAD=42°, так как это углы при основании равнобедренного треугольника и ∠CAD=42° по условию.
3) Треугольник CEB - равнобедренный с основанием CB, так как CE=EB по условию. Тогда ∠ECB=∠CBE=26°, так как это углы при основании равнобедренного треугольника и ∠CBE=26° по условию.
4) ∠ACD+∠DCE+∠ECB=112°
42°+∠DCE+26°=112°
∠DCE=44°