На сторонах MN, NK и MK равнобедренного треугольника MNK с оснаванием KM отметили точки Aи В, иС, так что AK =BM, угол КАС равен углуMBC докажите что kac равен треугольнику aBC
Обозначим пирамиду ABCD. Из вершины А в основании пирамиды проведем биссектрису АМ, она является и высотой (по свойству биссектрисы правильного треугольника), угол DAM=30 градусов (по условию боковое ребро наклонено к основанию под углом в 30 градусов). DH-высота пирамиды, точка Н - точка пересечения биссектрис треугольника АВС. Рассмотрим прямоугольный треугольник АВС, в нем : AD=9см (гипотенуза),угол DAH=30 градусов, значит, катет DH=1/2 AD=4,5 см, а DH- высота пирамиды. ответ : высота пирамиды = 4,5 см.
Значит, CK = АМ = 5х , ВК = ВМ = 8х
ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности
AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20
Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24
S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240
ОТВЕТ: S abc = 240