В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

На сторонах параллелограмма abcd, тупой угол которого равен 120 градусов, отложены векторы ab и ad, такие что |ab|=3 и |ad|=5. найдите угол между векторами ab и ac.

Показать ответ
Ответ:
танюша237
танюша237
10.09.2020 07:56
Векторы AD и ВС равны, так как равны их модули (противоположные стороны параллелограмма) и они сонаправлены.
Тогда мы можем найти модуль вектора АПС по теореме косинусов.
|АС|=√(9+25+2*3*5*1/2) (так как угол АВС тупой) =7.
Тогда косинус угла ВАС равен из этой же теоремы
Cos(<BAC)= (a²+b²-c²)/(2ab) (угол образован сторонами а и b) или
Cos(<BAC)=(9+49-25).(2*3*7)=0,786 (примерно).
Угол по таблице равен 38,2°.
 
Или так: введем систему координат с точкой их пересечения в начале вектора А.
Тогда имеем точки: А(0;0), В(1,5;3√3/2), С(6,5;3√3/2)
Вектор AВ{1,5;3√3/2}, |AB| = 3.
вектор АС{6,5;3√3/2}, |AC|=√(42,25+6,75)= √49=7.
Угол между векторами равен скалярному произведению этих векторов, деленному на протзведение их модулей.
Cos(<BAC)= (Xab*Xac+Yab*Yac)/(|AB|*|AC|) или
Cos(<BAC)=(9,75+6,75)/(3*7) ≈ 0,786.
<BAC ≈ 38,2°

На сторонах параллелограмма abcd, тупой угол которого равен 120 градусов, отложены векторы ab и ad,
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота