На сторонах PQ и PR треугольника PQR отмечены точки K и L соответственно. Биссектрисы углов PQL и PRK пересекаются в точке M. Найдите величину угла QMR, если ∠QKR=45∘, ∠QLR=30∘. ответ дайте в градусах.
Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
Объяснение:
1. Теорема: сумма угловΔ-ка = 180°. Из этого следует:
∠А = 180° - 30° -105° = 45° → ∠А = 45°
2. Из ∠С построим высоту СО:
СО⊥ АВ.
Рассмотрим ΔАОС.
∠АОС = 90° по построению,
∠А = 45°, значит, ∠АСО =90°- 45° = 45°.
Следовательно, ΔАОС - равнобедренный и
АО=СО.
По т. Пифагора:
АС² = АО² + СО² → АС² = 2СО² или
4² = 2*СО²
СО² = 16/2 = 8 → СО = √8 = 2√2.
СО = АО = 2√2
3. Рассмотрим ΔСОВ.
∠СОВ = 90° по построению
∠В = 30°
СО = 2√2 - катет, лежащий против угла в 30°.
Теорема: В прямоугольном Δ - ке против угла в 30° лежит катет, равный половине гипотенузы:
СВ = 2СО= 2 * 2√2 = 4√2
ОВ² =СВ² - СО² = (4√2)² - (2√2)² = 32 - 8 = 24
ОВ = √24 = 2√6
АВ = АО + ОВ = 2√2 +2√6
∠А = 45°
СВ = 4√2 ≈ 4* 1,41 = 5,64(см0
АВ = 2√2 +2√6 = 2* 1,41 +2*2,45 = 2,82 + 4,9 = 7,72 (см)
Сторона, к которой проведена высота, равна 3+12=15 м.
Высоту нужно найти.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
h²=3*12=36
h=√36=6 (м)
Ѕ=h*a:2
S=6*15:2=45 м²
Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы:
Р=a+b+c
а=√(3*15)=3√5 м
b=√(12*15)=6√5 м
Р=15+9√5 (м)
Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.