На сторонах равностороннего тре- угольника ABC (рис. 163) отметили точки M, Ки D так, что AD = BM = СК. Докажите, что треугольник MKD рав- носторонний. = чтобы было только ДОНО,ДОКОЗАТЬ
Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.
1. Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. С другой стороны, сумма углов, прилежащих к боковой стороне трапеции, тоже равна 180°, тогда углы при основаниях трапеции равные, и отсюда следует, что вписать в окружность можно только равнобедренную трапецию. В нашем случае трапеция АВСD равнобедренная, АВ = СD = 2 см, ∠CAD = 30°.
2. Так как по условию центр описанной окружности лежит на большем основании, то ∠ АСD вписанный, опирающийся на диаметр, тогда по теореме ∠ АСD = 90°.
3. В прямоугольном треугольнике ACD напротив угла в 30° лежит катет, равный половине гипотенузы, тогда AD = 2•CD = 2•2 = 4 (см).
4. ∆ABO и ∆DCO равные равносторонние, всё их углы по 60°, тогда и в равнобедренном ∆BOC ∠BOC = 180° - (60°+60°) = 60°, тогда и он равносторонний, ВС = ОВ = ОС = 2 см
12
Объяснение:
Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.
10 см.
Объяснение:
1. Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. С другой стороны, сумма углов, прилежащих к боковой стороне трапеции, тоже равна 180°, тогда углы при основаниях трапеции равные, и отсюда следует, что вписать в окружность можно только равнобедренную трапецию. В нашем случае трапеция АВСD равнобедренная, АВ = СD = 2 см, ∠CAD = 30°.
2. Так как по условию центр описанной окружности лежит на большем основании, то ∠ АСD вписанный, опирающийся на диаметр, тогда по теореме ∠ АСD = 90°.
3. В прямоугольном треугольнике ACD напротив угла в 30° лежит катет, равный половине гипотенузы, тогда AD = 2•CD = 2•2 = 4 (см).
4. ∆ABO и ∆DCO равные равносторонние, всё их углы по 60°, тогда и в равнобедренном ∆BOC ∠BOC = 180° - (60°+60°) = 60°, тогда и он равносторонний, ВС = ОВ = ОС = 2 см
5. Р ABCD = 4 + 2 + 2 + 2 = 10 (см)