На сторонах угла ∡ ABC точки A и C находятся на равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥ BD, CD⊥ BE. 1. Докажи равенство треугольников ΔAFD и ΔCFE.
2. Определи величину угла, под которым перпендикуляр CD пересекает BA, если AE пересекает BC под углом 73°.
1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE:
ΔBA
= Δ
.
По какому признаку доказывается это равенство?
По второму
По первому
По третьему
Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
углы стороны
ABE
BEA
CBD
EAB
DCB
BDC
CD
BC
BA
AE
DB
EB
По какому признаку доказывается равенство ΔAFD и ΔCFE?
По третьему
По второму
По первому
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
углы стороны
CEF
ADF
DFA
EFC
FAD
FCE
FC
CE
EF
AD
DF
FA
2. Величина угла, под которым перпендикуляр CD пересекает
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую