На сторонах угла ∡ ABC точки A и C находятся на равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥ BD, CD⊥ BE. 1. Докажи равенство треугольников ΔAFD и ΔCFE. 2. Определи величину угла, под которым перпендикуляр CD пересекает BA, если AE пересекает BC под углом 76°. 1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE: ΔBA = Δ . По какому признаку доказывается это равенство? По первому По второму По третьему Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак: углы стороны BDC DCB CBD ABE EAB BEA BA DB AE BC CD EB По какому признаку доказывается равенство ΔAFD и ΔCFE? По второму По первому По третьему Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак: углы стороны ADF EFC FAD FCE DFA CEF AD FA DF FC CE EF 2. Величина угла, под которым перпендикуляр CD пересекает прямую BA — °.
22. ∠АВС=∠х=90°, т.к. АВ⊥ВС по условию. Тогда ∠у=135-90=45°. Значит, и ∠ВАС=180-90-45=45°, т.е. ΔАВС - равнобедренный с основанием АС. Следовательно, АВ=ВС=8÷2=4.
24. Рассмотрим прямоуг-ые ΔАВС и ВАД: ∠ВАС=∠АВД, как третьи углы при двух равных по условию. Плюс они имеют общий катет АВ. Следовательно, рассм-ые Δ-и равны, а значит, равны и соответствующие стороны.
28. ΔАВС=ΔСДА, как прямоугольные треугольники по катету и гипотенузе (из условия). Значит, равны и соответствующие ∠САД=∠АСВ. Тогда ΔАОС - равнобедренный с основанием АС, и АО=СО как его боковые стороны.
22. ∠АВС=∠х=90°, т.к. АВ⊥ВС по условию. Тогда ∠у=135-90=45°. Значит, и ∠ВАС=180-90-45=45°, т.е. ΔАВС - равнобедренный с основанием АС. Следовательно, АВ=ВС=8÷2=4.
24. Рассмотрим прямоуг-ые ΔАВС и ВАД: ∠ВАС=∠АВД, как третьи углы при двух равных по условию. Плюс они имеют общий катет АВ. Следовательно, рассм-ые Δ-и равны, а значит, равны и соответствующие стороны.
28. ΔАВС=ΔСДА, как прямоугольные треугольники по катету и гипотенузе (из условия). Значит, равны и соответствующие ∠САД=∠АСВ. Тогда ΔАОС - равнобедренный с основанием АС, и АО=СО как его боковые стороны.
Объяснение:
22. ∠АВС=∠х=90°, т.к. АВ⊥ВС по условию. Тогда ∠у=135-90=45°. Значит, и ∠ВАС=180-90-45=45°, т.е. ΔАВС - равнобедренный с основанием АС. Следовательно, АВ=ВС=8÷2=4.
24. Рассмотрим прямоуг-ые ΔАВС и ВАД: ∠ВАС=∠АВД, как третьи углы при двух равных по условию. Плюс они имеют общий катет АВ. Следовательно, рассм-ые Δ-и равны, а значит, равны и соответствующие стороны.
28. ΔАВС=ΔСДА, как прямоугольные треугольники по катету и гипотенузе (из условия). Значит, равны и соответствующие ∠САД=∠АСВ. Тогда ΔАОС - равнобедренный с основанием АС, и АО=СО как его боковые стороны.
Объяснение:
22. ∠АВС=∠х=90°, т.к. АВ⊥ВС по условию. Тогда ∠у=135-90=45°. Значит, и ∠ВАС=180-90-45=45°, т.е. ΔАВС - равнобедренный с основанием АС. Следовательно, АВ=ВС=8÷2=4.
24. Рассмотрим прямоуг-ые ΔАВС и ВАД: ∠ВАС=∠АВД, как третьи углы при двух равных по условию. Плюс они имеют общий катет АВ. Следовательно, рассм-ые Δ-и равны, а значит, равны и соответствующие стороны.
28. ΔАВС=ΔСДА, как прямоугольные треугольники по катету и гипотенузе (из условия). Значит, равны и соответствующие ∠САД=∠АСВ. Тогда ΔАОС - равнобедренный с основанием АС, и АО=СО как его боковые стороны.