На стороне AB остроугольного треугольника ABC выбрана точка P так, что AP : BP = 2 : 1. Известно, что AC = CP = 1, ∠BCP = 15∘. Найдите длину стороны BC.
Для доказательства потребуются признаки равенства треугольников.
Признаки параллелограмма.
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий:
1. Противоположные стороны попарно равны ( AB = CD, AD = BC ).
2. Противоположные углы попарно равны ( A = C, B = D )
3. Две противоположные стороны равны и параллельны ( AB = CD, AB || CD )
4. Диагонали делятся в точке их пересечения пополам ( AO = OC, BO = OD)
Признак: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Стороны АВ=СD (дано). Углы ВАС и АСD равны (дано). Это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, эти прямые параллельны (признак). АВСD - параллелограмм по приведенному выше признаку. Что и требовалось доказать.
2. Треугольники ADB и DCB равны по двум углам (<1=<4 и <2=<3 - дано) и стороне между ними - DB - общая. В равных треугольниках против равных углов лежат равные стороны.
AD=CB, DC=AB. ABCD - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Объяснение:
Для доказательства потребуются признаки равенства треугольников.
Признаки параллелограмма.
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий:
1. Противоположные стороны попарно равны ( AB = CD, AD = BC ).
2. Противоположные углы попарно равны ( A = C, B = D )
3. Две противоположные стороны равны и параллельны ( AB = CD, AB || CD )
4. Диагонали делятся в точке их пересечения пополам ( AO = OC, BO = OD)
Признак: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Стороны АВ=СD (дано). Углы ВАС и АСD равны (дано). Это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, эти прямые параллельны (признак). АВСD - параллелограмм по приведенному выше признаку. Что и требовалось доказать.
2. Треугольники ADB и DCB равны по двум углам (<1=<4 и <2=<3 - дано) и стороне между ними - DB - общая. В равных треугольниках против равных углов лежат равные стороны.
AD=CB, DC=AB. ABCD - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
ЧТД.
AD - ? DC -?
AD/DC =AB/BC (теорема о биссектрисе).
AD/DC =36/30 ;
AD/DC =6/5 ;обозначаем AD=6k ; DC=5k ⇒AC =AD+DC =(6+5)*k=11k ;
20 =11k⇒k =20/11.
AD=6k =6*20/11=120/11 ; DC=5k=5*20/11 100/11.
* * * сразу отрезок AC =20 см разделить пропорц на 6 : 5 * * *
AD =6*( AC/(6+5) ) =6*( 20/11) =120/11 см. ( 10 10/11 см)
DC =5*( AC/(6+5) ) =5*( 20/11) =100/11 см. ( 9 1/11 см)
AD/DC=AB/BC⇔1+AD/DC =1+ AB/BC ⇔AC/DC =1+ AB/BC⇒
20/DC =1+36/30⇔20/DC =1+6/5 ⇒DC ⇔20/DC =(5+6)/5 ⇒
DC =5* 20/(5+6)= 5* 20/11 =100/11 .
аналогично AD=6* 20/(5+6)= 6* 20/11 =120/11.
AD/DC=AB/BC
AD/(AC-AD) =AB/BC. || можно обозначать AD= x⇒DC=AC-x =20 -x. ||
x/(20-x) =36/30 ⇔ x/(20-x) =6/5⇔5x =6(20-x)⇔5x =6*20 - 6x⇔11x =6*20⇒
x =6*20/11 =120/11 ;DC= 20 - 6*20/11 =(20*11 - 6*20)/11 =20(11-6)/11 =
= 5*20/11 =100/11.