На стороне ac треугольника abc отложен отрезок am, равный третьей части стороны ab, а на стороне ab — отрезок an, равный третьей части стороны ac. найдите mn, если bc=15.
Если прямые, пересекающие две другие прямые, отсекают на обеих из них пропорциональные отрезки, начиная от вершины, то такие прямые параллельны (обратная теорема Фалеса).
AM1/AB=AN1/AC => M1N1||BC
△AM1N1~△ABC (углы при основаниях равны как соответственные при параллельных) M1N1=BC/3 =5
△AMN=△AM1N1 (по двум сторонам и углу между ними) MN=M1N1 =5
AN1=AN=AC/3
Если прямые, пересекающие две другие прямые, отсекают на обеих из них пропорциональные отрезки, начиная от вершины, то такие прямые параллельны (обратная теорема Фалеса).
AM1/AB=AN1/AC => M1N1||BC
△AM1N1~△ABC (углы при основаниях равны как соответственные при параллельных)
M1N1=BC/3 =5
△AMN=△AM1N1 (по двум сторонам и углу между ними)
MN=M1N1 =5