На стороне AC треугольника ABC отмечена точка D, а на отрезке BD - точка MM. LL - точка пересечения прямых ABAB и MCMC. Оказалось, что MD - биссектриса угла AMC, AC=5, MD=CD=2, AM=CL. Найдите длину DL.
Рассмотрим треугольники АОС и ВОД. Они равны по первому признаку равенства треугольников: АО=ОВ и СО=ОД (по условию), угол АОС= углу ВОД (как вертикальные).
Из равенства треугольников следует, что угол САО= углу ОВД, а угол АСО=углу ОДВ. Так как внутренние накрест лежащие углы САО и ОВД, образованные прямыми АС и ВД и секущей АВ, равны, то прямые АС и ВД параллельны, ч.т.д..
Аналогично, так как внутренние накрест лежащие углы АСО и ОДВ, образованные прямыми АС и ВД и секущей СД, равны, то прямые АС и ВД параллельны, ч.т.д..
Дано:
АВС - прямоугольный
угол С=90°
угол А=37°
О - центр описанной окружности
Найти:
угол АОС - ?
угол СОВ - ?
Центр окружности, описанной около прямоугольного треугольника, совпадает с серединой гипотенузы, а её радиус равен половине гипотенузы, т.е. АО=ОВ=R.
Медиана, проведённая к гипотенузе, равна её половине, т.е. СО=АО=ОВ.
Рассмотрим треугольник АОС. АОС - равнобедренный, так как АО=ОС, значит, угол САО=углу АСО=37°, а угол АОС=180°-2*37°=106°
Углы АОС и СОВ - смежные, поэтому угол СОВ=180°-106°=74°
ответ: катеты видны под углами 106° и 74°.
О - пересечение АВ и СД
АО=ОВ
СО=ОД
Док-ть: АС || ВД
Док-во:
Рассмотрим треугольники АОС и ВОД. Они равны по первому признаку равенства треугольников: АО=ОВ и СО=ОД (по условию), угол АОС= углу ВОД (как вертикальные).
Из равенства треугольников следует, что угол САО= углу ОВД, а угол АСО=углу ОДВ. Так как внутренние накрест лежащие углы САО и ОВД, образованные прямыми АС и ВД и секущей АВ, равны, то прямые АС и ВД параллельны, ч.т.д..
Аналогично, так как внутренние накрест лежащие углы АСО и ОДВ, образованные прямыми АС и ВД и секущей СД, равны, то прямые АС и ВД параллельны, ч.т.д..