В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
1. Проведем высоту СК. Получили ВСКН прямоугольник. ВС = НК = 18 сантиметров.
2. Прямоугольный треугольник АВН = прямоугольному треугольнику СКЕ по гипотенузе и углу, так как угол А = угол Е, ВА = СЕ. Значит АН = КЕ = 9 сантиметров.
3. Рассмотрим прямоугольный треугольник АВН. Угол АВН = 180 - 45 - 90 = 45 (градусов). Тогда треугольник АНВ является равнобедренным. Следовательно ВН = НА = 9 сантиметров.
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
Дано:
равнобедренная трапеция АВСЕ,
ВС = 18 сантиметров,
ВН — высота,
ВН = 9 сантиметров,
угол ВАЕ = 45 градусов.
Найти S АВСЕ — ?
1. Проведем высоту СК. Получили ВСКН прямоугольник. ВС = НК = 18 сантиметров.
2. Прямоугольный треугольник АВН = прямоугольному треугольнику СКЕ по гипотенузе и углу, так как угол А = угол Е, ВА = СЕ. Значит АН = КЕ = 9 сантиметров.
3. Рассмотрим прямоугольный треугольник АВН. Угол АВН = 180 - 45 - 90 = 45 (градусов). Тогда треугольник АНВ является равнобедренным. Следовательно ВН = НА = 9 сантиметров.
4. Основание АЕ = АН + НК + КЕ = 9 + 18 + 9 = 36 (сантиметров).
5. S АВСЕ = (ВС + АЕ) * ВН = (18 + 36)/2 * 9 = 243 см^2.
ответ: 243 см^2.