на стороне АВ прямоугольника ABCD найти такую точку Е, из которой стороны AD и CD были бы видны равными углами.При каком соотношениями между сторонами прямоугольника задача решима
1)В параллелаграмме биссектриса одного из его углов отсекает от него равнобедренный треугольник, т. е. АВ=ВР=4см, а АВ=СД=4см - по свойству параллелаграмма. Ну или ∠РАД=∠ВРА- по свойству накрест лежащих углов по свойству параллельных прямых ВС и Ад, секущей АР, ∠РАД=∠ВАД - по свойству биссектрисы АР следовательно ∠ВРА=∠ВАД, а из этого следует, что ∡АВР-равнобедренный по признаку углов равнобедренного треугольника, следовательно ВА=ВР. 2)ВС=ВР+РС=14см, ВС=ДА=14 см - по свойству параллелаграмма. 3) Р АВСД=2(4+14)=36см.
Точка М находится на одинаковом расстоянии от всех вершин прямоугольного треугольника АВС, т.е. получаем пирамиду МАВС. АВ=12 см, МА=МВ=МС=10 см.
М -вершина пирамиды ,проектируется на середину гипотенузы, в центр окружности - точка О, описанной около прямоугольного треугольника. радиус описанной окружности R=ОА=ОВ=ОС=6 см рассмотрим прямоугольный треугольник МОА: гипотенуза МА=10 см, < МОА=90°, катет ОА=6 см катет ОМ найти по теореме Пифагора: МА²=МО²+ОА² 10²=МО²+6² МО=8 см
ответ: расстояние от точки до плоскости прямоугольного треугольника =8 см
а АВ=СД=4см - по свойству параллелаграмма.
Ну или ∠РАД=∠ВРА- по свойству накрест лежащих углов по свойству параллельных прямых ВС и Ад, секущей АР,
∠РАД=∠ВАД - по свойству биссектрисы АР
следовательно ∠ВРА=∠ВАД,
а из этого следует, что ∡АВР-равнобедренный по признаку углов равнобедренного треугольника,
следовательно ВА=ВР.
2)ВС=ВР+РС=14см,
ВС=ДА=14 см - по свойству параллелаграмма.
3) Р АВСД=2(4+14)=36см.
М -вершина пирамиды ,проектируется на середину гипотенузы, в центр окружности - точка О, описанной около прямоугольного треугольника.
радиус описанной окружности R=ОА=ОВ=ОС=6 см
рассмотрим прямоугольный треугольник МОА:
гипотенуза МА=10 см,
< МОА=90°,
катет ОА=6 см
катет ОМ найти по теореме Пифагора:
МА²=МО²+ОА²
10²=МО²+6²
МО=8 см
ответ: расстояние от точки до плоскости прямоугольного треугольника =8 см