Расстояние от точки К до прямой LM — это высота, проведённая из вершины К на сторону LM. Обозначим высоту через h. Треугольник КLM прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. Гипотенуза LM — с, тогда катет КL — 1/2 с. Площадь треугольника равна половине произведения катетов. Один катет — 1/2 с, другой — 24,8 S=1/2*1/2c*24,8=6,2с Площадь так же равна половине произведения высоты (h) на основание (c). S=1/2*h*c Приравняем правые части 6,2с=1/2*h*c h=6,2*2=12,4 ответ 12,4 см
Обозначим высоту через h.
Треугольник КLM прямоугольный.
В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы.
Гипотенуза LM — с, тогда катет КL — 1/2 с.
Площадь треугольника равна половине произведения катетов.
Один катет — 1/2 с, другой — 24,8
S=1/2*1/2c*24,8=6,2с
Площадь так же равна половине произведения высоты (h) на основание (c).
S=1/2*h*c
Приравняем правые части
6,2с=1/2*h*c
h=6,2*2=12,4
ответ 12,4 см
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см