На точку A действуют две силы AB−→− и AC−→− одинаковой величины. Угол между ними ∡A=70°. Определи величину приложенных сил, если в результате на точку A действует сила величиной 57 N (округли результат до целых).
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
ответ:Номер 1
NK,MN и MK-средние линии треугольника АВС
Средняя линия треугольника параллельна третьей стороне треугольника,а ее длина равна половине этой стороны
Следовательно
NK=AB/2=16/2=8 cм
MN=АС/2=20/2=10 см
МК=ВС/2=18/2=9 см
Р=8+10+9=27 см
Номер 2
Периметр треугольника KLM
P=KM+KL+ML
Периметр треугольника ETF
P=TF+FE+ET=KM/2+KL/2+ML/2
TF,FE и ET-это средние линии треугольника и они равны половине стороны напротив которой находятся
И поэтому периметр треугольника ETF
24:2=12 метров
Номер 3
ОК=1/2EF
EF=24•2=48 дм
Номер 4
Рассмотрим треугольник АСD
<D=90,т к это один из углов прямоугольника
И если угол АСD равен по условию 60 градусов,тогда угол САD равен 30 градусов
В прямоугольном треугольнике против угла 30 градусов лежит катет равный половине гипотенузы,в данном случае-этот катет CD,значит АС=30•2=60 м
В треугольнике АСD NM-средняя линия,которая равна половине стороны против которой она находится,значит NM=60:2=30 м
По определению-середины сторон прямоугольника являются вершинами ромба,следовательно,EFMN-ромб,у него все стороны равны,одну из них мы знаем NM=30 м
Р=30•4=120 м
Объяснение:
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3