(x/3)^2+y^2=1 - каноническое уравнение эллипса полуоси 3 (вдоль оси х) и 1 (вдоль оси у) F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее фокусное расстояние с=корень(3^2-1^2)=2*корень(2)
F1=(-2*корень(2);0) F2=(2*корень(2);0)
2)9x^2+25y^2-1=0 (x/(1/3))^2+(y/(1/5))^2=1 - каноническое уравнение эллипса полуоси 1/3 (вдоль оси х) и 1/5 (вдоль оси у) F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее фокусное расстояние с=корень((1/3)^2-(1/5)^2)=4/15=0,2(6) F1=(-4/15;0) F2=(4/15;0)
Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
(x/3)^2+y^2=1 - каноническое уравнение эллипса
полуоси 3 (вдоль оси х) и 1 (вдоль оси у)
F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее
фокусное расстояние с=корень(3^2-1^2)=2*корень(2)
F1=(-2*корень(2);0)
F2=(2*корень(2);0)
2)9x^2+25y^2-1=0
(x/(1/3))^2+(y/(1/5))^2=1 - каноническое уравнение эллипса
полуоси 1/3 (вдоль оси х) и 1/5 (вдоль оси у)
F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее
фокусное расстояние с=корень((1/3)^2-(1/5)^2)=4/15=0,2(6)
F1=(-4/15;0)
F2=(4/15;0)
№4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD.
Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны)
Отсюда AP/AM1 = AC1/AB;
8/6 = x/9;
x = 12;