Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
Проведем МТ⊥АВ, МК⊥ВС, МН⊥АС. Тогда МТ = МК = МН, так как точка М равноудалена от сторон треугольника (расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую).
Проведем МО⊥АВС, тогда МО = 3 см, расстояние от точки М до плоскости АВС.
Соединим точку О с точками Т, К и Н. ОТ, ОК и ОН - проекции соответствующих наклонных на плоскость АВС и так же перпендикулярны сторонам треугольника по теореме, обратной теореме о трех перпендикулярах.
Если наклонные, проведенные из одной точки, равны, то равны и их проекции. Значит точка О равноудалена от сторон треугольника, и значит О - центр окружности, вписанной в треугольник АВС, ОТ = ОК = ОН = r - радиус вписанной окружности.
Sabc = pr, где р - полупериметр.
p = (AB + BC + AC) / 2 = (13 + 15 + 14) / 2 = 42 / 2 = 21 см
К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2)
Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5)
М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у:
{(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3
{(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3
{Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
откуда находим
Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему
{-4+Ах = 3
{2+Ау = 4
и находим Ах = 7; Ау = 2
А(7;2)
Проведем МТ⊥АВ, МК⊥ВС, МН⊥АС. Тогда МТ = МК = МН, так как точка М равноудалена от сторон треугольника (расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую).
Проведем МО⊥АВС, тогда МО = 3 см, расстояние от точки М до плоскости АВС.
Соединим точку О с точками Т, К и Н. ОТ, ОК и ОН - проекции соответствующих наклонных на плоскость АВС и так же перпендикулярны сторонам треугольника по теореме, обратной теореме о трех перпендикулярах.
Если наклонные, проведенные из одной точки, равны, то равны и их проекции. Значит точка О равноудалена от сторон треугольника, и значит О - центр окружности, вписанной в треугольник АВС, ОТ = ОК = ОН = r - радиус вписанной окружности.
Sabc = pr, где р - полупериметр.
p = (AB + BC + AC) / 2 = (13 + 15 + 14) / 2 = 42 / 2 = 21 см
Найдем площадь треугольника по формуле Герона:
Sabc = √(p(p - AB)(p - BC)(p - AC))
Sabc = √(21 · (21 - 13) · (21 - 15) · (21 - 14)) = √(21 · 8 · 6 · 7) = √(3 · 7 · 4 · 2 · 2 · 3 · 7) =
= 3 · 7 · 2 · 2 = 84 см²
r = S / p = 84 / 21 = 4 см
ΔMOK: ∠MOK = 90°, по теореме Пифагора:
МК = √(МО²+ ОК²) = √(3² + 4²) = √25 = 5 см