Начертательная геометрия. Таблица по чертежу Необходимо заполнить таблицу по этому чертежу на расположение сторон, ребер и граней по проекции + по натуральной величине (+ или !
Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.
По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)
Для большего треугольника R - радиус вписанной окружности.
(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)
Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).
Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.
Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.
По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)
Для большего треугольника R - радиус вписанной окружности.
(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)
Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).
Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.
Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.
По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)
Для большего треугольника R - радиус вписанной окружности.
(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)
Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).
Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.
Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.
По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)
Для большего треугольника R - радиус вписанной окружности.
(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)
Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).
Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.