Начертим данные отрезок PQ и угол hk. (см. рисунок)
k
2. Проведём прямую, отметим на ней В и отложим
отрезок ВС, равный РО.
3. Отложим от луча BD, являющегося продолжением луча ВС,
угол 2DBM, равный углу zhk.
4. Построим прямую, проходящую через точку Си
перпендикулярную к прямой ВМ, и обозначим буквой Аточку пересечения этой прямой с лучом ВМ.
5. Полученный треугольник АВС будет искомым
36 см²
Объяснение:
На рисунке подобные треугольники. Они подобны по второму признаку (Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.)
Из пропорциональности сторон можно легко вычислить коэффициент подобия:
9/3 = 3
Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. площадь большого треугольника в 3² = 9 раз больше площади маленького. Соответственно она равна:
S = 4 * 9 = 36 см²
ответ: 60 градусов.
Объяснение: Для нахождения угла, образованного высотой и основанием равнобедренного треугольника разделим длину высоты на длину боковой стороны и получим косинус угла: 53/106=0,5. Косинус 0,5 соответствует углу 30 градусов. В равнобедренном треугольнике высота, биссектриса и медиана, проведенные из вершины угла совпадают. Значит угол при вершине будет 30х2=60 градусов. Сумма двух других углов при основании равна 180-60=120 градусов. Величина одного угла будет равна 120/2=60 градусов. В этом треугольнике все углы по 60 градусов