№1 а) угол АОВ = 108, так как углы С и АОВ опираются на одну и ту же дугу АВ. Угол С - вписанный, и равен половине дуги на которую опирается. Так как угол АОВ - центральный, следовательно он равен градусной мере дуги, на которую опирается. б) Аналогично а. Угол АОВ = 272
№2 1) Угол А = 180 - <В-<С = 64 |=> <C(вписанный) и <AOB(центральный) опираются на одну дугу АВ, <B(вписанный) и <AOC(центральный) опираются на одну дугу АС, <A(вписанный) и <BOC(центральный) опираются на одну дугу ВС. <AOB = 2<C = 128 <AOC = 2<B = 104 <BOC = 2<A = 128
АН1 + DН2 = 15-7 = 8
Треугольник АВН1 с углом при основании 60°, а треугольник DСН2 с углом 30°.
tg 60° = BH1/АН1 = 1/√3
AH1 = BH1/√3
tg 30° = CH2/DH2 = √3/3
DH2 = 3*CH2/√3
AH1 / DH2 = 3 |=> AH1 = 3*DH2
DH2 + 3*DH2 = 8
DH2 = 2
AH1 = 6
=> BH1 = tg 60° * AH1 = 6/√3=2√3 .
Рассмотрим прямоугольный треугольник DBH1. DB - диагональ.
DB² =DH1² + BH1² = (7+2)² +(2√3)²=81+12 = 93
DB = √93
аналогично рассмотрим прямоугольный треугольник ACH2
AC² = (7+6)²+(2√3)² = 169 +12 = 181
AC = √181
а) угол АОВ = 108, так как углы С и АОВ опираются на одну и ту же дугу АВ. Угол С - вписанный, и равен половине дуги на которую опирается. Так как угол АОВ - центральный, следовательно он равен градусной мере дуги, на которую опирается.
б) Аналогично а. Угол АОВ = 272
№2
1) Угол А = 180 - <В-<С = 64 |=> <C(вписанный) и <AOB(центральный) опираются на одну дугу АВ, <B(вписанный) и <AOC(центральный) опираются на одну дугу АС, <A(вписанный) и <BOC(центральный) опираются на одну дугу ВС.
<AOB = 2<C = 128
<AOC = 2<B = 104
<BOC = 2<A = 128