Начертите два параллельных отрезка, длины которых равны. Начертите точку, являющуюся центром симметрии, при котором один отрезок отображается на другой
ABCD квадрат, точка м принадлежит стороне СD, MK ⊥( ABC), СМ = 4√2 см, MD = 8√2 см. Найдите расстояние между прямой МК и прямой: 1) АС; 2) BD.
Объяснение:
Расстояние между двумя прямыми - это наименьшее расстояние между любыми 2-я точками, лежащими на линии. Или между точкой лежащей на прямой с другой параллельной прямой.
1) Пусть МР⊥АС, тогда расстоянием между МК и АС будет отрезок МР. ΔСМР подобен ΔCDH по 2-м углам : ∠С-общий , ∠СРМ=∠COD=90° по св. диагоналей⇒ сходственные стороны пропорциональны . Отрезок CD=4√2+8√2=12√2(cм) .
Найдем диагональ квадрата по т. Пифагора АС=√((12√2)²+(12√2)²)=24 ( см). Тогда половина диагонали DO=12 см.
, МР=4 см.
2) Пусть МН⊥BD, тогда расстоянием между МH и BD будет отрезок МH. Т.к. MD=2/3*DC, ,
Даны векторы а(0;m;-2) и b(-1;0;-1.
Находим их модули.
|а| = √(0² + m² + (-2)²) = √(m² + 4),
|b| = √(-1)² + 0² + (-1)²) = √2.
cos(a_b) =( axb)/(|a|*|b|) = (0 + m + 2)/(√(m² + 4)*√2) = (m + 2)/(√(2m² + 8).
Так как cos 60° = (1/2). то приравняем:
(m + 2)/(√(2m² + 8) = 1/2,
2m + 4 = √(2m² + 8), возведём обе части в квадрат.
4m² + 16m + 16 = 2m² + 8.
Получаем квадратное уравнение 2m² + 16m + 8 = 0, или
m² + 8m + 4 = 0.
Ищем дискриминант:
D=8^2-4*1*4=64-4*4=64-16=48;
Дискриминант больше 0, уравнение имеет 2 корня:
m_1=(√48-8)/(2*1)=(√48/2)-(8/2)=(4√3/2)-4= 2√3-4 ≈ -0,535898;
m_2=(-√48-8)/(2*1)=-√48/2-8/2=(-4√3/2-4= -2√3-4≈ -7,464102.
ответ: m = -4 ±2√3.
ABCD квадрат, точка м принадлежит стороне СD, MK ⊥( ABC), СМ = 4√2 см, MD = 8√2 см. Найдите расстояние между прямой МК и прямой: 1) АС; 2) BD.
Объяснение:
Расстояние между двумя прямыми - это наименьшее расстояние между любыми 2-я точками, лежащими на линии. Или между точкой лежащей на прямой с другой параллельной прямой.
1) Пусть МР⊥АС, тогда расстоянием между МК и АС будет отрезок МР. ΔСМР подобен ΔCDH по 2-м углам : ∠С-общий , ∠СРМ=∠COD=90° по св. диагоналей⇒ сходственные стороны пропорциональны . Отрезок CD=4√2+8√2=12√2(cм) .
Найдем диагональ квадрата по т. Пифагора АС=√((12√2)²+(12√2)²)=24 ( см). Тогда половина диагонали DO=12 см.
, МР=4 см.
2) Пусть МН⊥BD, тогда расстоянием между МH и BD будет отрезок МH. Т.к. MD=2/3*DC, ,
, МH=8 см.