АВСД-это правильная треугольная пирамида(смотри рисунок). В основании правильный треугольник. Значит точка О является одновременно точкой пересечения медиан, высот и биссектрис треугольника основания. А поскольку боковые рёбра по условию равны, то они имеют одинаковый наклон к основанию и опущенная из вершины пирамиды высота ДО приходит в эту точку О. Проводим апофему ДК. Получим прямоугольный треугольник АКД, поскольку ДАВ=45 по условию, то и АДК=45, отсюда АК=ДК. В точке пересечения медианы делятся в отношении 2/1 считая от вершины. По теореме Пифагора находим Н, потом ребро ДС и cosДАО=корень из2/корень из 3.
Находим длину рёбер ДВ и ДС: 58.5 67.5 84 105 315 ДВ = √(9²+13²) = √(81+169) = √250 ≈ 15.81139 см. ДС = √(9²+15²) = √(81+225) = √306 ≈ 17.49286 см.
Площади основы и грани СДВ находим по формуле Герона: So = √(21(21-13)(21-14)(21-15)) = 84 cm², здесь р = (13+14+15)/2=21 см. S(BCD)= 105 cm². a b c p 14 17.492856 15.811388 23.652122.
АВ = 13 см, ВС = 14 см, АС = 15 см (так как в задании это не оговорено).
Находим площади граней:
S(ADB) = (1/2)*9*13 = 58,5 cm²,
S(ADC) = (1/2)*9*15 = 67,5 cm².
Находим длину рёбер ДВ и ДС: 58.5 67.5 84 105 315 ДВ = √(9²+13²) = √(81+169) = √250 ≈ 15.81139 см.
ДС = √(9²+15²) = √(81+225) = √306 ≈ 17.49286 см.
Площади основы и грани СДВ находим по формуле Герона:
So = √(21(21-13)(21-14)(21-15)) = 84 cm², здесь р = (13+14+15)/2=21 см.
S(BCD)= 105 cm².
a b c p
14 17.492856 15.811388 23.652122.
S = 58,5 + 67,5 + 84 + 105 =315 cм².