Объяснение:
8.
1) Пусть ∠С = х°, тогда
∠В = 2х
2) Рассмотрим ΔАDС
Он - равнобедренный, т.к. АD= DС по условию. Следовательно,
∠С =∠DАС = х
3) ∠DАС = ∠DАВ - по условию,
∠DАС = ∠DАВ = х, а
∠ВАС = 2х
4) Сумма углов в треугольнике = 180°
∠ВАС + ∠В + ∠С = 180°
2х + 2х + х = 180°
5х = 180°
х = 180° : 5 = 36°
∠С = 36°
∠ВАС = ∠В = 36° * 2= 72°
9.
1) △NКР - равнобедренный, т.к. NR = KP по условию, значит,
∠KNP = ∠NPK = ( 180° - 110°) /2 = 70°/2 = 35°
2) ∠KNP = ∠KNМ по условию, значит,
∠KNP = ∠KNМ =35° , а
∠МNР = 2 *35° = 70°
3) Рассмотрим △МNР
∠МNР =70°
∠KNМ =35°
∠КМР = 180° - 70° - 35° = 75°
10.
Пусть 1ч. угла = х, тогда
∠TSR = 3x,
∠RSP = 5x, следовательно,
∠TSP = 3x + 5x =8x
2) Рассмотрим △ROP и △RОS
RO -общая сторона, РО = ОS по условию,
∠ROS = ∠ROP =90° по условию. Следовательно,
△ROP и △RОS по 2-м сторонам и углу между ними. Из этого следует,что
∠P = ∠RSP = 5x
3) Рассмотрим △РTS
∠P = 5х, ∠TSP = 8x, ∠TPS = 115°, тогда
∠P +∠TSP +∠TPS = 180°
5х + 8х + 115° = 180°
13х = 65°
х = 5°
4) ∠P = 5х = 5 * 5° = 25°
∠TSP = 8x = 8 * 5° = 40°
Дано:
AO=CO
угол BAO = углу DCO
угол OCD=37⁰
угол ODC=63⁰
угол COD=80⁰
Док-ть:
тр. AOB = тр. COD
Найти:
углы AOB, ABO, BAO - ?
Док-во:
Рассмотрим тр. AOB и COD
- AO=OC - по условию
- угол BAO = углу DCO - по условию
- угол AOB = углу COD - как вертикальные
След-но треугольники равны по стороне и двум прилежащим к ней углам.
тр. AOB = тр. COD ч.т.д.
угол BAO = углу DCO - по условию ⇒ угол BAO = 37⁰
угол COD = углу AOB - из док-ва ⇒ угол AOB = 80⁰
угол угол ABO = 180⁰-37⁰-80⁰ = 63⁰
Из вышеописанного док-ва тр. AOB = тр. COD:
угол BAO = углу DCO = 37⁰
угол COD = углу AOB = 80⁰
угол CDO = углу ABO = 63⁰
Объяснение:
8.
1) Пусть ∠С = х°, тогда
∠В = 2х
2) Рассмотрим ΔАDС
Он - равнобедренный, т.к. АD= DС по условию. Следовательно,
∠С =∠DАС = х
3) ∠DАС = ∠DАВ - по условию,
∠DАС = ∠DАВ = х, а
∠ВАС = 2х
4) Сумма углов в треугольнике = 180°
∠ВАС + ∠В + ∠С = 180°
2х + 2х + х = 180°
5х = 180°
х = 180° : 5 = 36°
∠С = 36°
∠ВАС = ∠В = 36° * 2= 72°
9.
1) △NКР - равнобедренный, т.к. NR = KP по условию, значит,
∠KNP = ∠NPK = ( 180° - 110°) /2 = 70°/2 = 35°
2) ∠KNP = ∠KNМ по условию, значит,
∠KNP = ∠KNМ =35° , а
∠МNР = 2 *35° = 70°
3) Рассмотрим △МNР
∠МNР =70°
∠KNМ =35°
∠КМР = 180° - 70° - 35° = 75°
10.
Пусть 1ч. угла = х, тогда
∠TSR = 3x,
∠RSP = 5x, следовательно,
∠TSP = 3x + 5x =8x
2) Рассмотрим △ROP и △RОS
RO -общая сторона, РО = ОS по условию,
∠ROS = ∠ROP =90° по условию. Следовательно,
△ROP и △RОS по 2-м сторонам и углу между ними. Из этого следует,что
∠P = ∠RSP = 5x
3) Рассмотрим △РTS
∠P = 5х, ∠TSP = 8x, ∠TPS = 115°, тогда
∠P +∠TSP +∠TPS = 180°
5х + 8х + 115° = 180°
13х = 65°
х = 5°
4) ∠P = 5х = 5 * 5° = 25°
∠TSP = 8x = 8 * 5° = 40°
Дано:
AO=CO
угол BAO = углу DCO
угол OCD=37⁰
угол ODC=63⁰
угол COD=80⁰
Док-ть:
тр. AOB = тр. COD
Найти:
углы AOB, ABO, BAO - ?
Док-во:
Рассмотрим тр. AOB и COD
- AO=OC - по условию
- угол BAO = углу DCO - по условию
- угол AOB = углу COD - как вертикальные
След-но треугольники равны по стороне и двум прилежащим к ней углам.
тр. AOB = тр. COD ч.т.д.
угол BAO = углу DCO - по условию ⇒ угол BAO = 37⁰
угол COD = углу AOB - из док-ва ⇒ угол AOB = 80⁰
угол угол ABO = 180⁰-37⁰-80⁰ = 63⁰
Из вышеописанного док-ва тр. AOB = тр. COD:
угол BAO = углу DCO = 37⁰
угол COD = углу AOB = 80⁰
угол CDO = углу ABO = 63⁰