Пусть ΔАВС- равнобедренный с вершиной А и углами при основании В и С. ВМ- высота, проведенная в боковой стороне.
Высота, проведенная к боковой стороне образует ∠90°. рассмотрим ΔВМС. он является прямоугольным, так как ∠ВМС - прямой. Так, как угол при вершине =120°, то каждый из углов при основании равен 30°. Катет прямоугольного треугольника, который лежит напротив острого угла 30° равен половине гипотенузы.
Катет ВМ (высота) - 13 см, значит гипотенуза (основание) ВС = 13×2 = 26 см.
ответ: 26 см
Объяснение:
Пусть ΔАВС- равнобедренный с вершиной А и углами при основании В и С. ВМ- высота, проведенная в боковой стороне.
Высота, проведенная к боковой стороне образует ∠90°. рассмотрим ΔВМС. он является прямоугольным, так как ∠ВМС - прямой. Так, как угол при вершине =120°, то каждый из углов при основании равен 30°. Катет прямоугольного треугольника, который лежит напротив острого угла 30° равен половине гипотенузы.
Катет ВМ (высота) - 13 см, значит гипотенуза (основание) ВС = 13×2 = 26 см.
Объяснение:
1)На рисунке DC и DB касательные к окружности с центром A, ∠САВ=124°.Найти ∠CDB.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания. ∠АСD= ∠АВD=90°.
АВDС- четырехугольник. Сумма углов четырехугольника 360°.
∠CDB=360°-90°-90°-124°=56°
2)Из одной точки круга проведен диаметр и хорду, которая равна радиусу круга. Найдите угол между ними
Пусть диаметр АВ, хорда АС, О-центр окружности. Известно, что ОА=СА.
ΔОСА-равносторонний, т.к. ОА=ОС как радиусы, ОА=СА по условии.
Значит все углы равны 180°:3=60 °
Угол между хордой и диаметром 60°