Начертите окружность и отметьте на ней точки A, B и C. Проведите перпендикуляры из центра окружности к сторонам треугольника АВС. В каком отношении они делят стороны треугольника?
Если угол ТМЕ=78 градусам, то смежный ему угол ТМN=180-78=102 градусам.
Рассмотрим теперь треугольник ТМN. Сумма его углов равна 180 градусам. Угол ТМN мы вычислили. Известно также, что угол N вдвое больше угла NTM (углы N и Т равны, поскольку треугольник NET - равнобедренный, а угол NTM равен половине угла N или угла Т, т. к. TM - биссектриса угла Т).
Получаем: N + TMN + NTM = 180
N + 102 + 0,5*N = 180
1,5N = 180-102
1,5N = 78
N = 52 градусов
Раз угол N = 52, то угол Т также равен 52 градусам. Угол Е = 180 - 52 - 52 = 180-104=76 градусам.
Объяснение: Биссектриса СМ делит ∆KLC на два других треугольника. Рассмотрим полученный треугольники СМК и LMC. По условиям угол CML=78°, тогда, угол СМК в ∆СКМ=180-78=102°;
Угол СМК=102°
Зная, что ∆KLC- равнобедренный, то угол К=углу С. Так как биссектриса СМ делит угол С пополам, угол КСМ в ∆СКМ буде в 2 раза меньше угла К. Пусть угол КСМ=х, тогда угол К=2х. Так сумма всех углов треугольника равна 180°, Составляем уравнение:
х+2х+102=180
3х+102=180
3х=180-102
3х=78
х=26
Часть угла, полученного при делении биссектрисой=26°
Объяснение:
Если угол ТМЕ=78 градусам, то смежный ему угол ТМN=180-78=102 градусам.
Рассмотрим теперь треугольник ТМN. Сумма его углов равна 180 градусам. Угол ТМN мы вычислили. Известно также, что угол N вдвое больше угла NTM (углы N и Т равны, поскольку треугольник NET - равнобедренный, а угол NTM равен половине угла N или угла Т, т. к. TM - биссектриса угла Т).
Получаем: N + TMN + NTM = 180
N + 102 + 0,5*N = 180
1,5N = 180-102
1,5N = 78
N = 52 градусов
Раз угол N = 52, то угол Т также равен 52 градусам. Угол Е = 180 - 52 - 52 = 180-104=76 градусам.
вроде так
ответ: угол L=76°; угол С= углу К=52°
Объяснение: Биссектриса СМ делит ∆KLC на два других треугольника. Рассмотрим полученный треугольники СМК и LMC. По условиям угол CML=78°, тогда, угол СМК в ∆СКМ=180-78=102°;
Угол СМК=102°
Зная, что ∆KLC- равнобедренный, то угол К=углу С. Так как биссектриса СМ делит угол С пополам, угол КСМ в ∆СКМ буде в 2 раза меньше угла К. Пусть угол КСМ=х, тогда угол К=2х. Так сумма всех углов треугольника равна 180°, Составляем уравнение:
х+2х+102=180
3х+102=180
3х=180-102
3х=78
х=26
Часть угла, полученного при делении биссектрисой=26°
Найдём угол К: угол К=26×2=52;
угол К=52°; теперь найдём угол L:
180-52×2= 180-104=76; угол L=76°