Начертите окружность произвольного радиуса, разделите ее на 12 равных дуг. Используя точки деления, постройте двенадцатиугольник, вписанный в окружность
1 попробуйте сделать рисунок, Вы увидите, что высота ВК отсекает прямоугольный треугольник АВК
2 чтобы вычислить периметр нам нужно только найти сторону АВ, а это очень просто, нужно только разобраться что такое sin
3 представьте себе , что мы сидим на чердаке под самой крышей. посередине стоит высокая палка, подпирающая крышу. Сама крыша образует равнобедренный треугольник или состоит из двух прямоугольник треугольников.
4 рассмотрим один из этих прямоугольник треугольников. Палка представляет собой катет (у нас в задаче он равен 2), а гипотенузу, т/е часть крыши что над нами - мы не знаем
5 и тут нам
поскольку синус - это есть не что иное, как отношение катета (2) к гипотенузе
sin 30 = 1/2
т/е если бы наш катет 2 разделился бы на гипотенузу, получилось бы 1/2
Значит гипотенуза в 2 раза длиннее катета и равна 4!
6 В итоге мы нашли сторону АВ
7 осталось сложить все стороны, а это легко поскольку стороны у параллелограмм попарно параллельны и попарно равны (попарно - это значит те, которые лежат напротив друг от друга )
Красный, синий и большой треугольники подобны - одинаковый острый угол, и прямой x/z = 9/16 z/y = 9/16 y = 16z/9 x = 9z/16 Теорема Пифагора для красного треугольника x² + z² = 9² (9z/16)² + z² = 9² 81/256*z² + z² = 81 (81 + 256)/256*z² = 81 337z² = 81*256 z² = 81*256/337 z = 9*16/√337 = 144/√337 см x = 9z/16 = 81/√337 см y = 16z/9 = 256/√337 см Малый катет большого треугольника x + z = (144 + 81)/√337 = 225/√337 см Большой катет большого треугольника y + z = (256 + 144)/√337 = 400/√337 см Площадь S = 1/2*225/√337*400/√337 = 45000/337 см²
Объяснение:
1 попробуйте сделать рисунок, Вы увидите, что высота ВК отсекает прямоугольный треугольник АВК
2 чтобы вычислить периметр нам нужно только найти сторону АВ, а это очень просто, нужно только разобраться что такое sin
3 представьте себе , что мы сидим на чердаке под самой крышей. посередине стоит высокая палка, подпирающая крышу. Сама крыша образует равнобедренный треугольник или состоит из двух прямоугольник треугольников.
4 рассмотрим один из этих прямоугольник треугольников. Палка представляет собой катет (у нас в задаче он равен 2), а гипотенузу, т/е часть крыши что над нами - мы не знаем
5 и тут нам
поскольку синус - это есть не что иное, как отношение катета (2) к гипотенузе
sin 30 = 1/2
т/е если бы наш катет 2 разделился бы на гипотенузу, получилось бы 1/2
Значит гипотенуза в 2 раза длиннее катета и равна 4!
6 В итоге мы нашли сторону АВ
7 осталось сложить все стороны, а это легко поскольку стороны у параллелограмм попарно параллельны и попарно равны (попарно - это значит те, которые лежат напротив друг от друга )
x/z = 9/16
z/y = 9/16
y = 16z/9
x = 9z/16
Теорема Пифагора для красного треугольника
x² + z² = 9²
(9z/16)² + z² = 9²
81/256*z² + z² = 81
(81 + 256)/256*z² = 81
337z² = 81*256
z² = 81*256/337
z = 9*16/√337 = 144/√337 см
x = 9z/16 = 81/√337 см
y = 16z/9 = 256/√337 см
Малый катет большого треугольника
x + z = (144 + 81)/√337 = 225/√337 см
Большой катет большого треугольника
y + z = (256 + 144)/√337 = 400/√337 см
Площадь
S = 1/2*225/√337*400/√337 = 45000/337 см²