Объяснение: обозначим вершины основания пирамиды А В С, вершину пирамиды Д, а её высоту ДО. В основании правильной трёхугольной пирамиды лежит равносторонний треугольник, поэтому АВ=ВС=АС=72м
Найдём площадь основания по формуле:
S=a²√3/4,где а- сторона основания:
S=72²√3/4=5184//√3/4=1296√3см²
S=1296см².
Проведём из вершин основания медианы АН и ВК. Они пересекаясь в точке О делятся между собой в отношении 2:1, начиная от вершины треугольника: АО: ОН=2:1. Также медиана является ещё и высотой, поскольку треугольник равносторонний. Найдём высоту основания через площадь следуя формуле обратной формуле площади:
S=½×a×h
h=S÷a÷½=1296÷72÷½=18×2=36см
h=36см
Обозначим пропорции 2:1 как 2х и х, и зная величину высоты, составим уравнение:
2х+х=36
3х=36
х=36/3
х=12
ОН=12см, тогда АО=12×2=24см.
Рассмотрим ∆АДО. Он прямоугольный где АО и ДО- катеты, а АД- гипотенуза. Угол ДАО=30°, по условиям, а катет лежащий напротив него равен половине гипотенузы, поэтому ДО=½× АД
Пусть ДО=х, тогда АД=2х, зная, что АО=24см, составим уравнение используя теорему Пифагора:
Осталось только выяснить, сосуд имеет форму конуса вершиной вверх или вершиной вниз. V₀ = 1600 мл 1. Конус в классической ориентации - основание внизу, вершина вверху. Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2 Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k² Объёмы относятся как k³ Объём верхней пустой части сосуда составит V₁ = V₀*k³ = 1600/8 = 200 мл Объём жидкости, налитой до половины составит V₂ = V₀-V₁ = 1600-200 = 1400 мл 2. Конус перевёрнут - основание вверху, вершина смотрит вниз В этом случае заполнен только объём V₁ из пункта V₁ = 200 мл
ответ: ДО=8√3см
Объяснение: обозначим вершины основания пирамиды А В С, вершину пирамиды Д, а её высоту ДО. В основании правильной трёхугольной пирамиды лежит равносторонний треугольник, поэтому АВ=ВС=АС=72м
Найдём площадь основания по формуле:
S=a²√3/4,где а- сторона основания:
S=72²√3/4=5184//√3/4=1296√3см²
S=1296см².
Проведём из вершин основания медианы АН и ВК. Они пересекаясь в точке О делятся между собой в отношении 2:1, начиная от вершины треугольника: АО: ОН=2:1. Также медиана является ещё и высотой, поскольку треугольник равносторонний. Найдём высоту основания через площадь следуя формуле обратной формуле площади:
S=½×a×h
h=S÷a÷½=1296÷72÷½=18×2=36см
h=36см
Обозначим пропорции 2:1 как 2х и х, и зная величину высоты, составим уравнение:
2х+х=36
3х=36
х=36/3
х=12
ОН=12см, тогда АО=12×2=24см.
Рассмотрим ∆АДО. Он прямоугольный где АО и ДО- катеты, а АД- гипотенуза. Угол ДАО=30°, по условиям, а катет лежащий напротив него равен половине гипотенузы, поэтому ДО=½× АД
Пусть ДО=х, тогда АД=2х, зная, что АО=24см, составим уравнение используя теорему Пифагора:
АД²-ДР²=АО²
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=576/3
х²=192
х=√192=√(3×64)=8√3
Итак: ДО=8√3см
V₀ = 1600 мл
1. Конус в классической ориентации - основание внизу, вершина вверху.
Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2
Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k²
Объёмы относятся как k³
Объём верхней пустой части сосуда составит
V₁ = V₀*k³ = 1600/8 = 200 мл
Объём жидкости, налитой до половины составит
V₂ = V₀-V₁ = 1600-200 = 1400 мл
2. Конус перевёрнут - основание вверху, вершина смотрит вниз
В этом случае заполнен только объём V₁ из пункта
V₁ = 200 мл