начертите прямые m и n пересекающиеся в точке А на прямой m отметьте точку B, отличную от точки А. являются ли прямые AB и m различными прямыми? может ли прямая n проходить через точку B?
Таким образом мы нашли один из углов при пересечении диагоналей (угол AEB) параллелограмма ABCD и он равен 53 градусам. Другой угол при пересечении (угол AED) является смежным к этому (к углу AEB) и следовательно равен 180 - 53 = 127 градусов. Оставшиеся два угла при пересечении (углы CED и BEC) являются вертикальными к уже найденным и равны 53 и 127 градусов соответственно. Меньшим из этих углов является угол 53 градуса, что и будет ответом к задаче.
в тр.АМС: по т.sin:
AM/sin угла АСМ=МС/sin угла МАС=2R
AM/sin (60-α)=МС/sin α=2R
АМ=2Rsin (60-α)
МС=2Rsin α
АМ+МС=2R(sin (60-α)+sin α)=2R*2sin30°cos(30-α)=2Rcos(30-α)
в тр.АBМ: по т.sin:
BМ/sin угла ВАМ=2R
BМ/sin (60+α)=2R
BМ=2Rsin(60+α)=2Rsin(90-(60+α))=2Rsin(90-(30-α))=2Rcos(30-α)
теперь:
АВ/sin60°=2R
АВ=2Rsin60°=2*√138*(√3/2)=√39
S ABC=(a²√3)/4(формула)⇒(39√3)/4
в тр.АМC: по т.cos:
AC²=AM²+МС²-2АМ*МС*сos угла М
39=AM²+МС²-2АМ*МС*сos120°...т.к.сos120°=-1/2
39=AM²+МС²+АМ*МС
S тр АМС=S АВСМ-S тр АВС=(49√3)/4-(39√3)/4=(5√3)/2
S тр АМС=1/2AM*MC*sin120°
(5√3)/2=1/2AM*MC*√3/2
AM*MC=10⇒AM²+MC²=29
(AM+MC)²=AM²+МС²+2АМ*МС=29+2*10=49
АМ+МС=7⇒
P=7+2√39
Обозначим точку пересечения диагоналей AC и BD параллелограмма ABCD как E.
Точка E делит диагональ AC пополам, следовательно AE = AC / 2 и следовательно AE = AB.
Рассмотрим треугольник ABE. Он равнобедренный, т.к. его стороны AB и AE равны, следовательно углы ABE и AEB тоже равны.
Углы BAE и ACD накрест лежащие, и как следствие равны (и равны 74 градусам, т.к. угол ACD известен по условию).
Найдем углы ABE и AEB. Как известно сумма углов треугольника 180 градусов, следовательно угол ABE = угол AEB = (180 - ACD) / 2 = (180 - 74) / 2 = 53 (градуса).
Таким образом мы нашли один из углов при пересечении диагоналей (угол AEB) параллелограмма ABCD и он равен 53 градусам. Другой угол при пересечении (угол AED) является смежным к этому (к углу AEB) и следовательно равен 180 - 53 = 127 градусов. Оставшиеся два угла при пересечении (углы CED и BEC) являются вертикальными к уже найденным и равны 53 и 127 градусов соответственно. Меньшим из этих углов является угол 53 градуса, что и будет ответом к задаче.
ответ: 53 градуса.
Рисунок: