В условии, очевидно, ошибка: треугольник АВС с такими сторонами не существует, так как любая сторона треугольника меньше суммы двух других сторон, а 6 > 4 + 1.
Эта задача на тему "Подобие треугольников" . Решим ее для ВС = 7 см.
АВ : MK = 4 : 8 = 1/2
AC : MN = 6 : 12 = 1/2
BC : KN = 7 : 14 = 1/2
Значит ΔАВС подобен ΔMKN по трем пропорциональным сторонам.
Объяснение:
один из углов треугольника равен 2х, то второй=3х, а третий=4х.
Т.к. сумма углов треугольника=180 гр., то
2х+3х+4х=180
9х=180
х=20 (градусам)
Тогда,
1) первый угол = 2*20=40(гр.), а его внешний угол будет равным 180-40=140(гр)
2) второй угол=3*20=60 (гр.), а его внешний угол будет равным 180-60=120(гр)
3) третий угол=4*20=80(гр),, а его внешний угол будет равным 180-80=100(гр)
Следовательно внешние углы будут относится, как 140:120:100,
сокращая на 20 получим, что внешние углы треугольника относятся, как 7:6:5
В условии, очевидно, ошибка: треугольник АВС с такими сторонами не существует, так как любая сторона треугольника меньше суммы двух других сторон, а 6 > 4 + 1.
Эта задача на тему "Подобие треугольников" . Решим ее для ВС = 7 см.
АВ : MK = 4 : 8 = 1/2
AC : MN = 6 : 12 = 1/2
BC : KN = 7 : 14 = 1/2
Значит ΔАВС подобен ΔMKN по трем пропорциональным сторонам.
Сумма углов треугольника равна 180°, значит
∠С = 180° - (∠А + ∠В) = 180° - (80° + 60°) = 180° - 140° = 40°
В подобных треугольниках напротив сходственных сторон лежат равные углы:
∠N = ∠С = 40°,
∠K = ∠В = 60°,
∠M = ∠А = 80°.
Объяснение: