Дан ромб с острым углом α = 30° и радиусом вписанной окружности r = 3 см. Боковые грани пирамиды наклонены к плоскости основания под углом β = 60°.
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника.
Высота в таком случае получается равна двум радиусам.
Объяснение:
Дано: АВСD - ромб, АС=18 см, ВD=26 см. ∠ОАD=60°.
Найти Р(АСВD), Р(АОD), ∠А, ∠В, ∠С, ∠D.
Диагонали ромба в точке пересечения делятся пополам, поэтому АО=ОС=18:2=9 см; ВО=ОD=26:2=13 см.
Найдем сторону ромба АD из ΔАОD-прямоугольного;
∠АDО=90-∠ОАD=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°; значит, АD=2АО=9*2=18 см.
AD=AB=BC=CD=18 cм.
Р(ABCD)=18*4=72 cм.
Р(АОD)=18+9+13=40 см.
Найдем углы ромба
Диагональ делит угол ромба пополам, поэтому ∠D=2∠ADO=30*2=60°
Противоположные углы ромба равны, поэтому ∠В=∠D=60°
Сумма углов ромба, прилежащих к одной стороне, равна 180°, поэтому ∠А=180-60=120°.∠С=∠А=120° как противолежащие углы ромба.
Дан ромб с острым углом α = 30° и радиусом вписанной окружности r = 3 см. Боковые грани пирамиды наклонены к плоскости основания под углом β = 60°.
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника.
Высота в таком случае получается равна двум радиусам.
2r = a sinα.
Отсюда находим сторону а ромба и его периметр Р:
а = 2r/sinα = 2*3/0,5 = 12 см.
Р = 4а = 4*12 = 48 см.
Находим апофему А:
А = r/cos β = 3/cos 60° = 3/0,5 = 6 см.
Sбок = (1/2)РА = (1/2)*48*6 = 144 см².