Начертите угол АВС, равный 45°. На стороне ВА угла, начиная от вершини последовательно отложите четыре равных друг другу отрезка и через концы этих отрезков проведите параллельные прямые, пересекающие сторону ВС. Затем сравните длины полученных на стороне ВС отрезков. Какой вывод относительно этих отрезков вы можете сделать? Проверьте результат для углов с другими величинами
1) В любом треугольнике центр вписанной окружности лежит внутри треугольника, так как биссектрисы треугольника пересекаются внутри треугольника.
2) В правильном треугольнике центры вписанной и описанной окружностей совпадают.
3) В остроугольном треугольнике центр описанной около него окружности лежит внутри треугольника.
4) В тупоугольном треугольнике центр описанной около него окружности лежит вне треугольника.
5) В прямоугольном треугольнике центр описанной около него окружности лежит в центре гипотенузы.
ответ: 30°.
Объяснение:
ΔОСВ: ОС=ОВ как радиусы одной окружности ⇒
ΔОСВ - равнобедренный, значит ∠ОВС=∠ОСВ=60° по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠СОВ=180°-(∠ОВС+∠ОСВ)=180°-(60°+60°)=60°.
ΔАОВ: АО=ВО как радиусы одной окружности ⇒
ΔАОВ - равнобедренный.
ОD- медиана ΔАОВ, т.к. АD=DВ по условию ⇒ ОD - биссектриса ⇒
∠ АОD=∠ВОD=60°, ∠ АОВ=∠АОD+∠ВОD=60°+60°=120°.
∠ ОАВ=∠ ОВА по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠ ОАВ=(180°-120°):2=60°:2=30°.